Citation: |
[1] |
S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math., 161 (2005), 223-342.doi: 10.4007/annals.2005.161.223. |
[2] |
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.doi: 10.1137/S0036139900380955. |
[3] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.doi: 10.1137/S0036139997332099. |
[4] |
C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," 2nd edition, Grundlehren der Mathematischen Wissenschaften (German) [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2005.doi: 10.1007/s11012-008-9160-4. |
[5] |
J. M. Del Castillo, P. Pintado and F. G. Benitez, A formulation of reaction time of traffic flow models, in "Transportation and Traffic Theory" (C. F. Daganzo eds.), Elsevier, Amsterdam, (1993), 387-405. |
[6] |
N. Fenichel, Persistence and smoothness of invariant manifolds and flows, Indiana Univ. Math. J., 21 (1971), 193-226.doi: 10.1512/iumj.1971.21.21017. |
[7] |
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqns., 31 (1979), 53-98.doi: 10.1016/0022-0396(79)90152-9. |
[8] |
L. R. Foy, Steady state solution of hyperbolic systems of conservation laws with viscosity terms, Comm. Pure Appl. Math., 17 (1964), 177-188.doi: 10.1002/cpa.3160170204. |
[9] |
J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal., 121 (1992), 235-265.doi: 10.1007/BF00410614. |
[10] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.doi: 10.1137/S0036141093243289. |
[11] |
J. M. Hong, C.-H. Hsu and B-C. Huang, Existence and uniqueness of generalized stationary waves for viscous gas flow through a nozzle with discontinuous cross section, J. Diff. Eqns., 253 (2012), 1088-1110.doi: 10.1016/j.jde.2012.04.021. |
[12] |
J. M. Hong, C.-H. Hsu and W. Liu, Viscous standing asymptotic states of isentropic compressible flows through a nozzle, Arch. Ration. Mech. Anal., 196 (2010), 575-597.doi: 10.1007/s00205-009-0245-6. |
[13] |
J. M. Hong, C.-H. Hsu and W. Liu, Inviscid and viscous stationary waves of gas flow through contracting-expanding nozzles, J. Diff. Eqns., 248 (2010), 50-76.doi: 10.1016/j.jde.2009.06.016. |
[14] |
J. M. Hong, C.-H. Hsu, Y.-C. Lin and W. Liu, Linear stability of the sub-to-super inviscid transonic stationary wave for gas flow in a nozzle of varying area, preprint. |
[15] |
C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems"(R. Johnson eds.), Lecture Notes in Math., 1609, Springer-Verlag, Berlin, 1994, 44-118.doi: 10.1007/BFb0095239. |
[16] |
R. D. Kühne, Freeway control and incident detection using a stochastic continuum theory of traffic flow, in "Proceedings of the 1st International Conference on Applied Advanced Technology in Transportation Engineering," San Diego, CA, 1989, 287-292. |
[17] |
R. D. Kühne and R. Beckschulte, Non-linearity stochastics of unstable traffic flow, in "Transportation and Traffic Theory"(C. F. Daganzo eds.), Elsevier Science Publishers, (1993), 367-386. |
[18] |
M. J. Lighthill and G. B. Whittam, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1995), 317-345.doi: 10.1098/rspa.1955.0089. |
[19] |
T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM. J. Math. Anal., 40 (2008), 1058-1075.doi: 10.1137/070690638. |
[20] |
T. Li and H.-L. Liu, Critical thresholds in a relaxation model for traffic flows, Indiana Univ. Math. J., 57 (2008), 1409-1430.doi: 10.1512/iumj.2008.57.3215. |
[21] |
W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws, Discrete Contin. Dynam. Syst., 10 (2004), 871-884.doi: 10.3934/dcds.2004.10.871. |
[22] |
H. J. Payne, Models of freeway traffic and control, in "Mathematical Models of Public Systems" (G. A. Bekey eds.), Simulation Councils Proc. Ser., 1 (1971), 51-60. |
[23] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42. |
[24] |
S. Schecter, Undercompressive shock waves and the Dafermos regularization, Nonlinearity, 15 (2002), 1361-1377.doi: 10.1088/0951-7715/15/4/318. |
[25] |
S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization, J. Dynam. Differential Equations, 16 (2004), 847-867.doi: 10.1007/s10884-004-6698-2. |
[26] |
P. Szmolyan and M. Wechselberger, Canards in $R^3$, J. Diff. Eqns., 177 (2001), 419-453.doi: 10.1006/jdeq.2001.4001. |
[27] |
B. Whitham, "Linear and nonlinear waves," Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.doi: 10.1002/9781118032954. |
[28] |
H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Research-B., 32 (1998), 485-498.doi: 10.1016/S0191-2615(98)00014-9. |
[29] |
H. M. Zhang, Structural properties of solutions arising from a nonequilibrium traffic flow theory, Transportation Research-B., 34 (2000), 583-603.doi: 10.1016/S0191-2615(99)00041-7. |
[30] |
H. M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transportation Research-B., 37 (2003), 27-41.doi: 10.1016/S0191-2615(01)00043-1. |