July  2013, 12(4): 1527-1546. doi: 10.3934/cpaa.2013.12.1527

Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions

1. 

CMAF, University of Lisbon, Portugal

2. 

Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich

3. 

University of Oviedo, Spain

Received  March 2011 Revised  September 2011 Published  November 2012

The paper addresses the Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions: \begin{eqnarray} u_{t}=div(a(x,t,u)|u|^{\alpha(x,t)}|\nabla u|^{p(x,t)-2} \nabla u) +f(x,t) \end{eqnarray} with given variable exponents $\alpha(x,t)$ and $p(x,t)$. We establish conditions on the data which guarantee the comparison principle and uniqueness of bounded weak solutions in suitable function spaces of Orlicz-Sobolev type.
Citation: Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527
References:
[1]

Y. Alkhutov, S. Antontsev and V. Zhikov, Parabolic equations with variable order of nonlinearity, Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), 23-50.

[2]

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differ. Integral Equ., 21 (2008), 401-419.

[3]

S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the $p(x)$-aplacian type, Adv. Math. Sci. Appl., 17 (2007), 287-304.

[4]

S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-Laplacian type, Adv. Differential Equations, 10 (2005), 1053-1080.

[5]

S. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Gidrodinamiki, Novosibirsk, 1986., (in Russian;, (). 

[6]

S. Antontsev, J. I. Díaz and S. Shmarev, "Energy Methods for Free Boundary Problems: Applications to Non-linear PDEs and Fluid Mechanics," Bikhäuser, Boston, 2002. Progress in Nonlinear Differential Equations and Their Applications, Vol. 48. doi: 10.1115/1.1483358.

[7]

S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Elsevier, 2006., Handbook of Differential Equations. Stationary Partial Differential Equations, (): 1.  doi: 10.1016/S1874-5733(06)80005-7.

[8]

S. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, Fundam. Prikl. Mat., 12 (2006), doi: 10.1016/S1874-5733(06)80005-7.

[9]

S. Antontsev and S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391. doi: 10.1016/j.jmaa.2009.07.019.

[10]

S. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat., 53 (2009), 355-399.

[11]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities, Math. Comput. Simulation, 81 (2011), 2018-1032. doi: 10.1016/j.matcom.2010.12.015.

[12]

S. Antontsev and S. Shmarev, Elliptic equations with triple variable nonlinearity, Complex Var. Elliptic Equ., 56 (2011), 573-597. doi: 10.1080/17476933.2010.504844.

[13]

M. Chipot, "Elliptic Equations: An Introductory Course," A series of Advanced Textbooks in Mathematics, Birkhäuser, 2009. doi: 10.1007/978-3-7643-9982-5_7.

[14]

M. Chipot and J.-F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 275-285. doi: 10.1017/S0308210500022265.

[15]

Ju. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations, Mat. Sb., 67 (1965), 609-642.

[16]

J. Díaz and J. Padial, Uniqueness and existence of a solution in $BV_t(q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.

[17]

J. Díaz and F. Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), 1085-1111. doi: 10.1137/S0036141091217731.

[18]

L. Diening, Maximal function on generalized Lebesgue spaces $L^p(\cdot)$, Math. Inequal. Appl., 7 (2004), 245-253. doi: 10.7153/mia-07-27.

[19]

D. Edmunds and J. Rákosnĭk, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267-293.

[20]

P. Harjulento and P. Hästoö, An overview of variable exponent Lebesgue and Sobolev spaces,, in Future trends in geometric function theory, (). 

[21]

A. I. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for quasilinear elliptic-parabolic equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, 259 (1999), 67-98, doi: 10.1023/A:1014488123746.

[22]

A. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42 (1987), 169-222. doi: 10.1070/RM1987v042n02ABEH001309.

[23]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 116 (1991), 592-618.

[24]

G. I. Laptev, Solvability of second-order quasilinear parabolic equations with double degeneration, Sibirsk. Mat. Zh., 38 (1997), 1335-1355. doi: 10.1007/BF02675942.

[25]

J. Musielak, "Orlicz Spaces and Modular Spaces," vol. 1034 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072212.

[26]

S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), 461-482. doi: 10.1080/10652460412331320322.

[27]

S. Samko, Density $C^\infty_0 (R^n)$ in the generalized Sobolev spaces $W^{m,p(x)}(R^n)$, Dokl. Akad. Nauk, 369 (1999), 451-454.

[28]

K. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems, Nonlinear Anal., 65 (2006), 2103-2134. doi: 10.1016/j.na.2005.11.053.

[29]

M. Sango, Local boundedness for doubly degenerate quasi-linear parabolic systems, Appl. Math. Lett., 16 (2003), 465-468. doi: 10.1016/S0893-9659(03)00021-1.

[30]

A. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal., 86 (2007), 755-782. doi: 10.1080/00036810701435711.

[31]

S. Degtyarev and A. Tedeev, $L_1$-$L_\infty$ estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data, Mat. Sb., 198 (2007), 45-66. doi: 10.1070/SM2007v198n05ABEH003853.

[32]

P. Cianci, A. Martynenko and A. Tedeev, The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source, Nonlinear Anal., 73 (2010), 2310-2323. doi: 10.1016/j.na.2010.06.026.

[33]

C. Vázquez, E. Schiavi, J. Durany, J. I. Díaz and N. Calvo, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2003), 683-707. doi: 10.1137/S0036139901385345.

[34]

V. Zhikov, On Lavrentiev's effect, Dokl. Akad. Nauk, 345 (1995), 10-14.

[35]

V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249-269.

[36]

V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 1-14. doi: 10.1007/s10958-005-0497-0.

show all references

References:
[1]

Y. Alkhutov, S. Antontsev and V. Zhikov, Parabolic equations with variable order of nonlinearity, Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), 23-50.

[2]

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differ. Integral Equ., 21 (2008), 401-419.

[3]

S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the $p(x)$-aplacian type, Adv. Math. Sci. Appl., 17 (2007), 287-304.

[4]

S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-Laplacian type, Adv. Differential Equations, 10 (2005), 1053-1080.

[5]

S. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Gidrodinamiki, Novosibirsk, 1986., (in Russian;, (). 

[6]

S. Antontsev, J. I. Díaz and S. Shmarev, "Energy Methods for Free Boundary Problems: Applications to Non-linear PDEs and Fluid Mechanics," Bikhäuser, Boston, 2002. Progress in Nonlinear Differential Equations and Their Applications, Vol. 48. doi: 10.1115/1.1483358.

[7]

S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Elsevier, 2006., Handbook of Differential Equations. Stationary Partial Differential Equations, (): 1.  doi: 10.1016/S1874-5733(06)80005-7.

[8]

S. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, Fundam. Prikl. Mat., 12 (2006), doi: 10.1016/S1874-5733(06)80005-7.

[9]

S. Antontsev and S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl., 361 (2010), 371-391. doi: 10.1016/j.jmaa.2009.07.019.

[10]

S. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat., 53 (2009), 355-399.

[11]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities, Math. Comput. Simulation, 81 (2011), 2018-1032. doi: 10.1016/j.matcom.2010.12.015.

[12]

S. Antontsev and S. Shmarev, Elliptic equations with triple variable nonlinearity, Complex Var. Elliptic Equ., 56 (2011), 573-597. doi: 10.1080/17476933.2010.504844.

[13]

M. Chipot, "Elliptic Equations: An Introductory Course," A series of Advanced Textbooks in Mathematics, Birkhäuser, 2009. doi: 10.1007/978-3-7643-9982-5_7.

[14]

M. Chipot and J.-F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 275-285. doi: 10.1017/S0308210500022265.

[15]

Ju. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations, Mat. Sb., 67 (1965), 609-642.

[16]

J. Díaz and J. Padial, Uniqueness and existence of a solution in $BV_t(q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.

[17]

J. Díaz and F. Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), 1085-1111. doi: 10.1137/S0036141091217731.

[18]

L. Diening, Maximal function on generalized Lebesgue spaces $L^p(\cdot)$, Math. Inequal. Appl., 7 (2004), 245-253. doi: 10.7153/mia-07-27.

[19]

D. Edmunds and J. Rákosnĭk, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267-293.

[20]

P. Harjulento and P. Hästoö, An overview of variable exponent Lebesgue and Sobolev spaces,, in Future trends in geometric function theory, (). 

[21]

A. I. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for quasilinear elliptic-parabolic equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, 259 (1999), 67-98, doi: 10.1023/A:1014488123746.

[22]

A. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42 (1987), 169-222. doi: 10.1070/RM1987v042n02ABEH001309.

[23]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 116 (1991), 592-618.

[24]

G. I. Laptev, Solvability of second-order quasilinear parabolic equations with double degeneration, Sibirsk. Mat. Zh., 38 (1997), 1335-1355. doi: 10.1007/BF02675942.

[25]

J. Musielak, "Orlicz Spaces and Modular Spaces," vol. 1034 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072212.

[26]

S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), 461-482. doi: 10.1080/10652460412331320322.

[27]

S. Samko, Density $C^\infty_0 (R^n)$ in the generalized Sobolev spaces $W^{m,p(x)}(R^n)$, Dokl. Akad. Nauk, 369 (1999), 451-454.

[28]

K. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems, Nonlinear Anal., 65 (2006), 2103-2134. doi: 10.1016/j.na.2005.11.053.

[29]

M. Sango, Local boundedness for doubly degenerate quasi-linear parabolic systems, Appl. Math. Lett., 16 (2003), 465-468. doi: 10.1016/S0893-9659(03)00021-1.

[30]

A. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal., 86 (2007), 755-782. doi: 10.1080/00036810701435711.

[31]

S. Degtyarev and A. Tedeev, $L_1$-$L_\infty$ estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data, Mat. Sb., 198 (2007), 45-66. doi: 10.1070/SM2007v198n05ABEH003853.

[32]

P. Cianci, A. Martynenko and A. Tedeev, The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source, Nonlinear Anal., 73 (2010), 2310-2323. doi: 10.1016/j.na.2010.06.026.

[33]

C. Vázquez, E. Schiavi, J. Durany, J. I. Díaz and N. Calvo, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2003), 683-707. doi: 10.1137/S0036139901385345.

[34]

V. Zhikov, On Lavrentiev's effect, Dokl. Akad. Nauk, 345 (1995), 10-14.

[35]

V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249-269.

[36]

V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 1-14. doi: 10.1007/s10958-005-0497-0.

[1]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[2]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[3]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[4]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[5]

Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[8]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[9]

Yang Liu, Wenke Li. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4367-4381. doi: 10.3934/dcdss.2021112

[10]

Andrea Signori. Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach. Evolution Equations and Control Theory, 2020, 9 (1) : 193-217. doi: 10.3934/eect.2020003

[11]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[12]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[13]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[14]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[15]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[16]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[17]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[18]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure and Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[19]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018

[20]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (16)

[Back to Top]