\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fracture models as $\Gamma$-limits of damage models

Abstract Related Papers Cited by
  • We analyze the asymptotic behavior of a variational model for damaged elastic materials. This model depends on two small parameters, which govern the width of the damaged regions and the minimum elasticity constant attained in the damaged regions. When these parameters tend to zero, we find that the corresponding functionals $\Gamma$-converge to a functional related to fracture mechanics. The corresponding problem is brittle or cohesive, depending on the asymptotic ratio of the two parameters.
    Mathematics Subject Classification: Primary: 74A45, 49J45; Secondary: 35A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with line-tension effect, Arch. Rational Mech. Anal., 144 (1998), 1-46.doi: 10.1007/s002050050111.

    [2]

    F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.doi: 10.2307/1990893.

    [3]

    L. Ambrosio, L. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford University Press, Oxford, 2000.

    [4]

    L. Ambrosio, A. Lemenant and G. Royer-CarfagniA variational model for plastic slip and its regularization via $\Gamma$-convergence, J. Elasticity, to appear. Available from http://rd.springer.com/article/10.1007/s10659-012-9390-5#. doi: 10.1007/s10659-012-9390-5.

    [5]

    L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence, Comm. Pure Appl. Math., 43 (1990), 999-1036.doi: 10.1002/cpa.3160430805.

    [6]

    L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital., 6-B (1992), 105-123.

    [7]

    B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148.doi: 10.1007/s10659-007-9107-3.

    [8]

    G. Buttazzo, "Semicontinuity, Relaxation and Integral Representation in the Calculus of Variation," Pitman Res. Notes Math. Ser., 203, Longman, Harlow, 1989.

    [9]

    J.-M. Coron, The continuity of the rearrangement in $W^{1,p}(R)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 57-85.

    [10]

    G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Anal., 38 (1999), 585-604.doi: 10.1016/S0362-546X(98)00132-1.

    [11]

    G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Basel, 1993.doi: 10.1007/978-1-4612-0327-8.

    [12]

    L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992.

    [13]

    H. Federer, "Geometric Measure Theory," Springer-Verlag, 1969.

    [14]

    E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics 80, Birkhäuser, Basel, 1984.

    [15]

    K. Hilden, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math., 18 (1976), 215-235.

    [16]

    F. IurlanoFracture and plastic models as $\Gamma$-limits of damage models under different regimes, Adv. Calc. Var., to appear.

    [17]

    G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return