July  2013, 12(4): 1755-1768. doi: 10.3934/cpaa.2013.12.1755

On the temporal decay estimates for the degenerate parabolic system

1. 

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, str. R. Luxemburg 74, Donetsk, 83114, Ukraine

2. 

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Roza Luxemburg st.74, 340114 Donetsk

Received  March 2011 Revised  March 2012 Published  November 2012

We study long-time behavior for the Cauchy problem of degenerate parabolic system which in the scalar case coincides with classical porous media equation. Sharp bounds of the decay in time estimates of a solution and its size of support were established. Moreover, local space-time estimates under the optimal assumption on initial data were proven.
Citation: Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755
References:
[1]

D. Andreucci and E. Di Benedetto, A new approach to initial traces in nonlinear filtration, Annales Institut H. Poincaré Analyse non Linéaire, 7 (1990), 305-334.

[2]

D. Andreucci and A. F. Tedeev, Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity, Advances in Differential Equations, 5 (2000), 833-860.

[3]

D. Andreucci and A. F. Tedeev, Finite speed of propagation for thin film equations and other higher order parabolic equations with general nonlinearity, Interfaces and Free Boundaries, 3 (2001), 233-264.

[4]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations, Advances in Differential Equations, 10 (2005), 89-120.

[5]

S. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-linear, in "PDEs and Fluid Mechanics," Bikhäuser, Boston, 2002, Progress in Nonlinear Differential Equations and Their Applications, Vol. 48.

[6]

Ph. Benilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $R^N$ under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1984), 51-87.

[7]

E. Di Benedetto, "Degenerate Parabolic Equations," Springer-Verlag, 1993.

[8]

E. Di Benedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, Journal für die reine und angewandte Math., 357 (1985), 1-22.

[9]

A. Jüngel, P. A. Markovich and G. Toscani, Decay rate for solutions of degenerate parabolic systems, J. Diff. Eqns., Conf. 06, (2001), 189-202.

[10]

A. S. Kalashnikov, Some properties of the qualitative theory of nonlinear degenerate second-order parabolic equations, Russian Math. Surveys, 42 (1987), 169-222.

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," volume 23 of Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968.

[12]

J. L. Vazquez, "The Porous Medium Equation. Mathematical Theory," Oxford Mathematical Monographs. Clarendon Press, Oxvord, 2007.

[13]

H. M. Yin, On p-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory, Quart. appl. Math., 59 (2001), 47-66.

[14]

H. M. Yin, A degenerate evolution system modelling Bean's critical-state type-II superconductors, Discrete and Continuous Dynamical Systems, 8 (2002), 781-794.

[15]

H. M. Yin, On degenerate parabolic system, J. Differential Equations, 245 (2008), 722-736.

[16]

H. Yuan, The Cauchy problem for a quasilinear degenerate parabolic system, Nonlinear Analysis, TMA, 23 (1994), 155-164.

show all references

References:
[1]

D. Andreucci and E. Di Benedetto, A new approach to initial traces in nonlinear filtration, Annales Institut H. Poincaré Analyse non Linéaire, 7 (1990), 305-334.

[2]

D. Andreucci and A. F. Tedeev, Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity, Advances in Differential Equations, 5 (2000), 833-860.

[3]

D. Andreucci and A. F. Tedeev, Finite speed of propagation for thin film equations and other higher order parabolic equations with general nonlinearity, Interfaces and Free Boundaries, 3 (2001), 233-264.

[4]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations, Advances in Differential Equations, 10 (2005), 89-120.

[5]

S. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-linear, in "PDEs and Fluid Mechanics," Bikhäuser, Boston, 2002, Progress in Nonlinear Differential Equations and Their Applications, Vol. 48.

[6]

Ph. Benilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $R^N$ under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1984), 51-87.

[7]

E. Di Benedetto, "Degenerate Parabolic Equations," Springer-Verlag, 1993.

[8]

E. Di Benedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, Journal für die reine und angewandte Math., 357 (1985), 1-22.

[9]

A. Jüngel, P. A. Markovich and G. Toscani, Decay rate for solutions of degenerate parabolic systems, J. Diff. Eqns., Conf. 06, (2001), 189-202.

[10]

A. S. Kalashnikov, Some properties of the qualitative theory of nonlinear degenerate second-order parabolic equations, Russian Math. Surveys, 42 (1987), 169-222.

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," volume 23 of Translation of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968.

[12]

J. L. Vazquez, "The Porous Medium Equation. Mathematical Theory," Oxford Mathematical Monographs. Clarendon Press, Oxvord, 2007.

[13]

H. M. Yin, On p-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory, Quart. appl. Math., 59 (2001), 47-66.

[14]

H. M. Yin, A degenerate evolution system modelling Bean's critical-state type-II superconductors, Discrete and Continuous Dynamical Systems, 8 (2002), 781-794.

[15]

H. M. Yin, On degenerate parabolic system, J. Differential Equations, 245 (2008), 722-736.

[16]

H. Yuan, The Cauchy problem for a quasilinear degenerate parabolic system, Nonlinear Analysis, TMA, 23 (1994), 155-164.

[1]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[2]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[3]

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097

[4]

Todor Gramchev, Nicola Orrú. Cauchy problem for a class of nondiagonalizable hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 533-542. doi: 10.3934/proc.2011.2011.533

[5]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[6]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[7]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[8]

Renzhi Qiu, Shanjian Tang. The Cauchy problem of Backward Stochastic Super-Parabolic Equations with Quadratic Growth. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 3-. doi: 10.1186/s41546-019-0037-3

[9]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[10]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[11]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[12]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[13]

Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099

[14]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[15]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[16]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[17]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[18]

Horst Heck, Matthias Hieber, Kyriakos Stavrakidis. $L^\infty$-estimates for parabolic systems with VMO-coefficients. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 299-309. doi: 10.3934/dcdss.2010.3.299

[19]

Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2923-2960. doi: 10.3934/cpaa.2019131

[20]

Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]