• Previous Article
    Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains
  • CPAA Home
  • This Issue
  • Next Article
    An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type
September  2013, 12(5): 1861-1880. doi: 10.3934/cpaa.2013.12.1861

Bounded and unbounded oscillating solutions to a parabolic-elliptic system in two dimensional space

1. 

Department of Mathematics, Faculty of Sciences, Ehime University, Matsuyama, 790-8577

2. 

Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550

Received  March 2011 Revised  October 2012 Published  January 2013

In this paper, we consider solutions to a Cauchy problem for a parabolic-elliptic system in two dimensional space. This system is a simplified version of a chemotaxis model, and is also a model of self-interacting particles.
The behavior of solutions to the problem closely depends on the $L^1$-norm of the solutions. If the quantity is larger than $8\pi$, the solution blows up in finite time. If the quantity is smaller than the critical mass, the solution exists globally in time. In the critical case, infinite blowup solutions were found.
In the present paper, we direct our attention to radial solutions to the problem whose $L^1$-norm is equal to $8\pi$ and find bounded and unbounded oscillating solutions.
Citation: Yūki Naito, Takasi Senba. Bounded and unbounded oscillating solutions to a parabolic-elliptic system in two dimensional space. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1861-1880. doi: 10.3934/cpaa.2013.12.1861
References:
[1]

P. Biler and N. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction particles I, Colloq. Math., 66 (1994), 319-334.

[2]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi$ problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Meth. Appl. Sci., 29 (2006), 1563-1583. doi: 10.1002/mma.743.

[3]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model, Comm. Pure Appl. Math., 61 (2008), 1449-1481. doi: 10.1002/cpa.20225.

[4]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[5]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbfR^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616. doi: 10.1016/j.crma.2004.08.011.

[6]

E. Feireisl, Ph. Laurençot and H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569.

[7]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbfR^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[8]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Diff. Eqs., 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[10]

T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$, Differential Integral Equations, 24 (2011), 29-68.

[11]

T. Ogawa and T. Nagai, Global existence of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$,, preprint., (). 

[12]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 337 (2003), 745-771.

show all references

References:
[1]

P. Biler and N. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction particles I, Colloq. Math., 66 (1994), 319-334.

[2]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi$ problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Meth. Appl. Sci., 29 (2006), 1563-1583. doi: 10.1002/mma.743.

[3]

A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model, Comm. Pure Appl. Math., 61 (2008), 1449-1481. doi: 10.1002/cpa.20225.

[4]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[5]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbfR^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616. doi: 10.1016/j.crma.2004.08.011.

[6]

E. Feireisl, Ph. Laurençot and H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569.

[7]

C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbfR^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.

[8]

C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Diff. Eqs., 169 (2001), 588-613. doi: 10.1006/jdeq.2000.3909.

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[10]

T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$, Differential Integral Equations, 24 (2011), 29-68.

[11]

T. Ogawa and T. Nagai, Global existence of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$,, preprint., (). 

[12]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 337 (2003), 745-771.

[1]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[2]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure and Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[3]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018

[4]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[5]

Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659

[6]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[7]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[8]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[9]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[10]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[11]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[12]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[13]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[14]

Pengmei Zhang, Jiashan Zheng. Boundedness and stabilization of a three-dimensional parabolic-elliptic Keller-Segel-Stokes system. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022047

[15]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[16]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[17]

Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 279-292. doi: 10.3934/dcdss.2020016

[18]

Min Zou, An-Ping Liu, Zhimin Zhang. Oscillation theorems for impulsive parabolic differential system of neutral type. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2351-2363. doi: 10.3934/dcdsb.2017103

[19]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[20]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]