Citation: |
[1] |
P. Biler and N. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction particles I, Colloq. Math., 66 (1994), 319-334. |
[2] |
P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi$ problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Meth. Appl. Sci., 29 (2006), 1563-1583.doi: 10.1002/mma.743. |
[3] |
A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical two-dimensional Patlak-Keller-Segel model, Comm. Pure Appl. Math., 61 (2008), 1449-1481.doi: 10.1002/cpa.20225. |
[4] |
S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.doi: 10.1016/0025-5564(81)90055-9. |
[5] |
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbfR^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616.doi: 10.1016/j.crma.2004.08.011. |
[6] |
E. Feireisl, Ph. Laurençot and H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569. |
[7] |
C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbfR^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.doi: 10.1002/cpa.3160450906. |
[8] |
C. Gui, W.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Diff. Eqs., 169 (2001), 588-613.doi: 10.1006/jdeq.2000.3909. |
[9] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[10] |
T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$, Differential Integral Equations, 24 (2011), 29-68. |
[11] |
T. Ogawa and T. Nagai, Global existence of solutions to a parabolic-elliptic system of a drift-diffusion type in $\mathbfR^2$, preprint. |
[12] |
P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 337 (2003), 745-771. |