Advanced Search
Article Contents
Article Contents

Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains

Abstract Related Papers Cited by
  • We show that on a bounded domain $\Omega\subset R^N$ with Lipschitz continuous boundary $\partial \Omega$, weak solutions of the elliptic equation $\lambda u-Au=f$ in $\Omega$ with the boundary conditions $-\gamma\Delta_\Gamma u+\partial_\nu^a u+\beta u=g$ on $\partial \Omega$ are globally Hölder continuous on $\bar \Omega$. Here $A$ is a uniformly elliptic operator in divergence form with bounded measurable coefficients, $\Delta_\Gamma$ is the Laplace-Beltrami operator on $\partial \Omega$, $\partial_\nu^a u$ denotes the conormal derivative of $u$, $\lambda,\gamma>0$ are real numbers and $\beta$ is a bounded measurable function on $\partial Omega$. We also obtain that a realization of the operator $A$ in $C(\bar \Omega)$ with the general Wentzell boundary conditions $(Au)|_{\partial \Omega}-\gamma\Delta_\Gamma u+\partial_\nu^a u+\beta u=g$ on $\partial \Omega$ generates a strongly continuous compact semigroup. Some analyticity results of the semigroup are also discussed.
    Mathematics Subject Classification: Primary: 35J20, 35B65, 35B45,35K05; Secondary: 47D06.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Dual semigroup and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.doi: 10.1007/BF02774019.


    H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62.doi: 10.1007/BF01759381.


    W. Arendt, G. Metafune, D. Pallara and S. Romanelli, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247-261.doi: 10.1007/s00233-002-0010-8.


    R. F. Bass and P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab., 19 (1991), 486-508.doi: 10.1214/aop/1176990437.


    M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions, J. Differential Equations, 247 (2009), 1949-1979.doi: 10.1016/j.jde.2009.07.017.


    G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions, J. Differential Equations, 246 (2009), 2434-2447.doi: 10.1016/j.jde.2008.10.004.


    E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511566158.


    E. De Giorgi, Sulla differenziabilità e analiticità delle estremali degli integral multipli regolari, Men. Accad. Sci. Torino, 3 (1957), 25-43.


    K. J. Engel, The Laplacian on $C(\bar \Omega)$ with generalized Wentzell boundary conditions, Arch. Math. (Basel), 81 (2003), 548-558.doi: 10.1007/s00013-003-0557-y.


    A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.doi: 10.1002/mana.200910086.


    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions, J. Evol. Eq., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y.


    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition, Adv. Differential Equations, 11 (2006), 481-510.


    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.doi: 10.1016/j.jmaa.2006.11.058.


    M. Fukushima and M. Tomisaki, Reflecting diffusions on Lipschitz domains with cusps: Analytic construction and Skorohod representation, Potential Anal., 4 (1995), 377-408.doi: 10.1007/BF01053454.


    M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Relat. Fields, 106 (1996), 521-557.doi: 10.1007/s004400050074.


    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 2001.doi: 10.1007/978-3-642-61798-0.


    G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.


    D. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, MAA Stud. Math., 23 (1982), 1-68.


    J. Jost, "Riemannian Geometry and Geometric Analysis," Fifth edition. Universitext. Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-642-21298-7.


    O. A. Ladyzhenskaya and N. N. Ural鈥檛seva, "Linear and Quasilinear Elliptic Equations," Mathematics in Science and Engineering. 46. New York-London: Academic Press, 1968.


    J. Maly and W. P. Ziemer, "Fine Regurality of Solutions of Elliptic Partial Differential Equations," Providence, Amer. Math. Soc., 1997.


    C. B. Morrey Jr, Second order elliptic equations in several variables and Hölder continuity, Math. Z., 72 (1959), 146-164.doi: 10.1007/BF01162944.


    J. Moser, A new proof of the de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Commu. Pure Appl. Math., 13 (1960), 457-468.doi: 10.1002/cpa.3160130308.


    M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 80 (1968), 1-122.doi: 10.1007/BF02413623.


    R. Nittka, Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains, J. Differential Equations, 251 (2011), 860-880.doi: 10.1016/j.jde.2011.05.019.


    El M. Ouhabaz, "Analysis of Heat Equations on Domains," Lond. Math. Soc. Monographs Series, 31. Princeton University Press, Princeton, NJ, 2005.


    R. S. Phillips, The adjoint semi-group, Pacific J. Math., 5 (1955), 269-283.doi: 10.2140/pjm.1955.5.269.


    G. Stampacchia, Problemi al contorno ellittici con dati discontinui dotati di soluzioni Hölderiane, Ann. Mat. Pura Appl., 51 (1960), 1-38.doi: 10.1007/BF02410941.


    M. E. Taylor, "Partial Differential Equations. I. Basic Theory," Texts Appl. Math., vol. 23, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4684-9320-7.


    J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.doi: 10.1016/j.jde.2010.12.012.


    M. Warma, "The Laplacian with General Robin Boundary Conditions," Ph.D Dissertation, University of Ulm (Germany), 2002.


    M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$, Semigroup Forum, 66 (2003), 162-170.doi: 10.1007/s002330010124.


    M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains, Semigroup Forum, 73 (2006), 10-30.doi: 10.1007/s00233-006-0617-2.


    M. Warma, Analyticity on $L^1$ of the heat semigroup with Wentzell boundary conditions, Arch. Math. (Basel), 94 (2010), 85-89.doi: 10.1007/s00013-009-0068-6.

  • 加载中

Article Metrics

HTML views() PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint