• Previous Article
    On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity
  • CPAA Home
  • This Issue
  • Next Article
    Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains
September  2013, 12(5): 1907-1926. doi: 10.3934/cpaa.2013.12.1907

Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130

Received  July 2011 Revised  November 2012 Published  January 2013

This paper deals with the zero dissipation limit problem for the Navier-Stokes equations when the viscosity and the heat-conductivity are of the same order. In the case when the Riemann solution of the Euler equations is piecewise constants with a contact discontinuity, we prove that there exist global solutions to the compressible Navier-Stokes equations, which converge to the in-viscid solution away from the contact discontinuity on any finite time interval, at some convergence rate as the dissipations tend towards zero. In addition, a faster convergence rate is obtained, so long as the strength of contact discontinuity $\delta=|\theta_+ -\theta_-|$ is taken suitably small.
Citation: Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907
References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis T.M.A., 1 (1977), 223-233. doi: 10.1016/0362-546X(77)90032-3.

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal., 121 (1992), 235-265. doi: 10.1007/BF00410614.

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data, Indiana Univ. Math. J., 38 (1989), 861-915.

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations, SIAM J. Math. Anal., 44(3) (2012), 1742-1759. arXiv:1011.1991v1. doi: 10.1137/100814305.

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2005), 55-77. doi: 10.1007/s00205-005-0380-7.

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity, Kinetic and Related Models, 3 (2010), 685-728. arXiv:1011.1990v1 doi: 10.3934/krm.2010.3.685.

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384. doi: 10.1137/050626478.

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194. doi: 10.1017/S0308210500018308.

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Diff. Eqns., 248 (2010), 95-110. doi: 10.1016/j.jde.2009.08.016.

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Math. Anal. Appl., 387(2) (2012), 1033-1043. doi: 10.1016/j.jmaa.2011.10.010.

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models," Oxford Science Publication, Oxford, 1998.

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," $2^{nd},$ Springger-Verlag, New York, 1994.

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl., 299 (2004), 411-432. doi: 10.1016/j.jmaa.2004.03.064.

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Diff. Eqns., 249 (2010), 827-871. doi: 10.1016/j.jde.2010.03.011.

[15]

Z. Xin, On nonlinear stability of contact discontinuities, In "Hyperbolic Problems: Theory; Numerics, Applicaions" (Stony Brook, NY, 1994), 249-257. Word Sci. Publishing, River Edge, NJ, 1996.

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases, Comm. Pure. Appl. Math., 46 (1993), 621-665. doi: 0010-3640/93/050621-45.

show all references

References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis T.M.A., 1 (1977), 223-233. doi: 10.1016/0362-546X(77)90032-3.

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal., 121 (1992), 235-265. doi: 10.1007/BF00410614.

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data, Indiana Univ. Math. J., 38 (1989), 861-915.

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations, SIAM J. Math. Anal., 44(3) (2012), 1742-1759. arXiv:1011.1991v1. doi: 10.1137/100814305.

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2005), 55-77. doi: 10.1007/s00205-005-0380-7.

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity, Kinetic and Related Models, 3 (2010), 685-728. arXiv:1011.1990v1 doi: 10.3934/krm.2010.3.685.

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384. doi: 10.1137/050626478.

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194. doi: 10.1017/S0308210500018308.

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Diff. Eqns., 248 (2010), 95-110. doi: 10.1016/j.jde.2009.08.016.

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Math. Anal. Appl., 387(2) (2012), 1033-1043. doi: 10.1016/j.jmaa.2011.10.010.

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models," Oxford Science Publication, Oxford, 1998.

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," $2^{nd},$ Springger-Verlag, New York, 1994.

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl., 299 (2004), 411-432. doi: 10.1016/j.jmaa.2004.03.064.

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Diff. Eqns., 249 (2010), 827-871. doi: 10.1016/j.jde.2010.03.011.

[15]

Z. Xin, On nonlinear stability of contact discontinuities, In "Hyperbolic Problems: Theory; Numerics, Applicaions" (Stony Brook, NY, 1994), 249-257. Word Sci. Publishing, River Edge, NJ, 1996.

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases, Comm. Pure. Appl. Math., 46 (1993), 621-665. doi: 0010-3640/93/050621-45.

[1]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[2]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[3]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[4]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[5]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[6]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[7]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[8]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[9]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[10]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[11]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[12]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[13]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[14]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[15]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[16]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[17]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[18]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[19]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[20]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]