-
Previous Article
Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential
- CPAA Home
- This Issue
-
Next Article
Elliptic equations with cylindrical potential and multiple critical exponents
Tug-of-war games and the infinity Laplacian with spatial dependence
1. | Instituto de Matemática Aplicada del Litoral (IMAL), CONICET-UNL, Departamento de Matemática, Facultad de Ingeniería Química, UNL, Güemes 3450, S3000GLN Santa Fe, Argentina |
2. | Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, 1428 – Buenos Aires |
References:
[1] |
Tonći Antunović, Yuval Peres, Scott Sheffield and Stephanie Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition, Comm. Partial Differential Equations, 37 (2012), 1839-1869.
doi: 10.1080/03605302.2011.642450. |
[2] |
Scott N. Armstrong and Charles K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364 (2012), 595-636.
doi: 10.1090/S0002-9947-2011-05289-X. |
[3] |
Scott N. Armstrong and Charles K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37 (2010), 381-384.
doi: 10.1007/s00526-009-0267-9. |
[4] |
Scott N. Armstrong, Charles K. Smart and Stephanie J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc., 139 (2011), 1763-1776.
doi: 10.1090/S0002-9939-2010-10666-4. |
[5] |
Gunnar Aronsson, Michael G. Crandall and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[6] |
G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337.
doi: 10.1081/PDE-100107824. |
[7] |
E. N. Barron, L. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.
doi: 10.1090/S0002-9947-07-04338-3. |
[8] |
Marino Belloni and Bernd Kawohl, The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$, ESAIM Control Optim. Calc. Var., 10 (2004), 28-52 (electronic).
doi: 10.1051/cocv:2003035. |
[9] |
M. Belloni, B. Kawohl and P. Juutinen, The $p$-Laplace eigenvalue problem as $p\to\infty$ in a Finsler metric, J. Eur. Math. Soc. (JEMS), 8 (2006), 123-138.
doi: 10.4171/JEMS/40. |
[10] |
T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems. Some topics in nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1991), 15-68. |
[11] |
Thierry Champion and Luigi De Pascale, Principles of comparison with distance functions for absolute minimizers, J. Convex. Anal., 14 (2007), 515-541. |
[12] |
Fernando Charro, Jesus García Azorero and Julio D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games, Calc. Var. Partial Differential Equations, 34 (2009), 307-320.
doi: 10.1007/s00526-008-0185-2. |
[13] |
Fernando Charro and Ireneo Peral, Limit branch of solutions as $p\to\infty$ for a family of sub-diffusive problems related to the $p$-Laplacian, Comm. Partial Differential Equations, 32 (2007), 1965-1981.
doi: 10.1080/03605300701454792. |
[14] |
Michael G. Crandall, Gunnar Gunnarsson and Peiyong Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), 1587-1615.
doi: 10.1080/03605300601088807. |
[15] |
Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[16] |
Lawrence C. Evans and Ovidiu Savin, $C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differential Equations, 32 (2008), 325-347.
doi: 10.1007/s00526-007-0143-4. |
[17] |
Lawrence C. Evans and Charles K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42 (2011), 289-299.
doi: 10.1007/s00526-010-0388-1. |
[18] |
E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29-55.
doi: 10.1007/s00030-006-4030-z. |
[19] |
E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292.
doi: 10.1137/S0036141095294067. |
[20] |
Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal., 33 (2001), 545-569.
doi: 10.1137/S0036141000380000. |
[21] |
Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[22] |
Petri Juutinen and Peter Lindqvist, On the higher eigenvalues for the $\infty$-eigenvalue problem, Calc. Var. Partial Differential Equations, 23 (2005), 169-192.
doi: 10.1007/s00526-004-0295-4. |
[23] |
Petri Juutinen, Peter Lindqvist and Juan J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[24] |
Robert V. Kohn and Sylvia Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407.
doi: 10.1002/cpa.20101. |
[25] |
Ashok P. Maitra and William D. Sudderth, "Discrete Gambling and Stochastic Games," Applications of Mathematics (New York) 32, Springer-Verlag, 1996. |
[26] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var., 18 (2012), 81-90.
doi: 10.1051/cocv/2010046. |
[27] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 215-241.
doi: 10.2422/2036-2145.201005_003. |
[28] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[29] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081.
doi: 10.1137/100782073. |
[30] |
Adam M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp., 74 (2005), 1217-1230.
doi: 10.1090/S0025-5718-04-01688-6. |
[31] |
Yuval Peres, Gábor Pete and Stephanie Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38 (2010), 541-564.
doi: 10.1007/s00526-009-0298-2. |
[32] |
Yuval Peres, Oded Schramm, Scott Sheffield and David B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[33] |
Yuval Peres and Scott Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[34] |
Julio D. Rossi and Mariel Saez, Optimal regularity for the pseudo infinity Laplacian, ESAIM Control Optim. Calc. Var., 13 (2007), 294-304.
doi: 10.1051/cocv:2007018. |
[35] |
Ovidiu Savin, $C^1$ regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., 176 (2005), 351-361.
doi: 10.1007/s00205-005-0355-8. |
[36] |
, "Sthocastic Games & Applications," Proceedings of the Nato Advanced Study Institute held in Stony Brook, NY, July 7-17, 1999, Abraham Neyman and Sylvain Sorin (eds.),, NATO Science Series C: Mathematical and Physical Sciences, (2003).
|
show all references
References:
[1] |
Tonći Antunović, Yuval Peres, Scott Sheffield and Stephanie Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition, Comm. Partial Differential Equations, 37 (2012), 1839-1869.
doi: 10.1080/03605302.2011.642450. |
[2] |
Scott N. Armstrong and Charles K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364 (2012), 595-636.
doi: 10.1090/S0002-9947-2011-05289-X. |
[3] |
Scott N. Armstrong and Charles K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37 (2010), 381-384.
doi: 10.1007/s00526-009-0267-9. |
[4] |
Scott N. Armstrong, Charles K. Smart and Stephanie J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc., 139 (2011), 1763-1776.
doi: 10.1090/S0002-9939-2010-10666-4. |
[5] |
Gunnar Aronsson, Michael G. Crandall and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439-505.
doi: 10.1090/S0273-0979-04-01035-3. |
[6] |
G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26 (2001), 2323-2337.
doi: 10.1081/PDE-100107824. |
[7] |
E. N. Barron, L. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101.
doi: 10.1090/S0002-9947-07-04338-3. |
[8] |
Marino Belloni and Bernd Kawohl, The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$, ESAIM Control Optim. Calc. Var., 10 (2004), 28-52 (electronic).
doi: 10.1051/cocv:2003035. |
[9] |
M. Belloni, B. Kawohl and P. Juutinen, The $p$-Laplace eigenvalue problem as $p\to\infty$ in a Finsler metric, J. Eur. Math. Soc. (JEMS), 8 (2006), 123-138.
doi: 10.4171/JEMS/40. |
[10] |
T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems. Some topics in nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1991), 15-68. |
[11] |
Thierry Champion and Luigi De Pascale, Principles of comparison with distance functions for absolute minimizers, J. Convex. Anal., 14 (2007), 515-541. |
[12] |
Fernando Charro, Jesus García Azorero and Julio D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games, Calc. Var. Partial Differential Equations, 34 (2009), 307-320.
doi: 10.1007/s00526-008-0185-2. |
[13] |
Fernando Charro and Ireneo Peral, Limit branch of solutions as $p\to\infty$ for a family of sub-diffusive problems related to the $p$-Laplacian, Comm. Partial Differential Equations, 32 (2007), 1965-1981.
doi: 10.1080/03605300701454792. |
[14] |
Michael G. Crandall, Gunnar Gunnarsson and Peiyong Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation, Comm. Partial Differential Equations, 32 (2007), 1587-1615.
doi: 10.1080/03605300601088807. |
[15] |
Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[16] |
Lawrence C. Evans and Ovidiu Savin, $C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differential Equations, 32 (2008), 325-347.
doi: 10.1007/s00526-007-0143-4. |
[17] |
Lawrence C. Evans and Charles K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42 (2011), 289-299.
doi: 10.1007/s00526-010-0388-1. |
[18] |
E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29-55.
doi: 10.1007/s00030-006-4030-z. |
[19] |
E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal., 29 (1998), 279-292.
doi: 10.1137/S0036141095294067. |
[20] |
Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms, SIAM J. Math. Anal., 33 (2001), 545-569.
doi: 10.1137/S0036141000380000. |
[21] |
Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[22] |
Petri Juutinen and Peter Lindqvist, On the higher eigenvalues for the $\infty$-eigenvalue problem, Calc. Var. Partial Differential Equations, 23 (2005), 169-192.
doi: 10.1007/s00526-004-0295-4. |
[23] |
Petri Juutinen, Peter Lindqvist and Juan J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[24] |
Robert V. Kohn and Sylvia Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407.
doi: 10.1002/cpa.20101. |
[25] |
Ashok P. Maitra and William D. Sudderth, "Discrete Gambling and Stochastic Games," Applications of Mathematics (New York) 32, Springer-Verlag, 1996. |
[26] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var., 18 (2012), 81-90.
doi: 10.1051/cocv/2010046. |
[27] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, On the definition and properties of $p$-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 215-241.
doi: 10.2422/2036-2145.201005_003. |
[28] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[29] |
Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42 (2010), 2058-2081.
doi: 10.1137/100782073. |
[30] |
Adam M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp., 74 (2005), 1217-1230.
doi: 10.1090/S0025-5718-04-01688-6. |
[31] |
Yuval Peres, Gábor Pete and Stephanie Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38 (2010), 541-564.
doi: 10.1007/s00526-009-0298-2. |
[32] |
Yuval Peres, Oded Schramm, Scott Sheffield and David B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[33] |
Yuval Peres and Scott Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048. |
[34] |
Julio D. Rossi and Mariel Saez, Optimal regularity for the pseudo infinity Laplacian, ESAIM Control Optim. Calc. Var., 13 (2007), 294-304.
doi: 10.1051/cocv:2007018. |
[35] |
Ovidiu Savin, $C^1$ regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., 176 (2005), 351-361.
doi: 10.1007/s00205-005-0355-8. |
[36] |
, "Sthocastic Games & Applications," Proceedings of the Nato Advanced Study Institute held in Stony Brook, NY, July 7-17, 1999, Abraham Neyman and Sylvain Sorin (eds.),, NATO Science Series C: Mathematical and Physical Sciences, (2003).
|
[1] |
Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure and Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044 |
[2] |
Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure and Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217 |
[3] |
Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 |
[4] |
Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329 |
[5] |
Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029 |
[6] |
Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 |
[7] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1837-1855. doi: 10.3934/dcdss.2021007 |
[8] |
Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042 |
[9] |
Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 |
[10] |
Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18 |
[11] |
Oliver Juarez-Romero, William Olvera-Lopez, Francisco Sanchez-Sanchez. A simple family of solutions for forest games. Journal of Dynamics and Games, 2017, 4 (2) : 87-96. doi: 10.3934/jdg.2017006 |
[12] |
Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 |
[13] |
Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 |
[14] |
Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769 |
[15] |
Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 |
[16] |
Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214 |
[17] |
Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control and Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233 |
[18] |
Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477 |
[19] |
Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 767-786. doi: 10.3934/dcds.2010.27.767 |
[20] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]