Citation: |
[1] |
R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, NA, Series B: Real World Applications, 40 (2001), 1159-1188.doi: 10.1016/j.nonrwa.2010.08.025. |
[2] |
M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547-561.doi: 10.1016/S0362-546X(99)00218-7. |
[3] |
S. A. Beilin, On a Mixed nonlocal problem for a wave equation, Electronic J. Differential Equations, 2006 (2006), 1-10.doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf. |
[4] |
A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl., 12 (2005), 391-399.doi: 10.1007/s00030-005-0008-5. |
[5] |
H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. and Math. Sci., 21 (1998), 533-548.doi: 10.1155/S016117129800074X. |
[6] |
Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1, Academic Press, NewYork, 1969.doi: 10.1016/S0076-5392(08)62290-0. |
[7] |
J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[8] |
N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992), 613-623.doi: 10.1016/0362-546X(92)90097-X. |
[9] |
N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions, Nonlinear Anal., 29 (1997), 1217-1230.doi: 10.1016/S0362-546X(97)87360-9. |
[10] |
N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Prob., Hindawi Publishing Corporation, 2005 (2005), 337-358.doi: 10.1155/BVP.2005.337. |
[11] |
N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, NA, TMA, Series A: Theory and Methods, 67 (2007), 842-864.doi: 10.1016/j.na.2006.06.044. |
[12] |
S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation, Arab. J. for Science and Engineering, 26 (2001), 63-68. |
[13] |
L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl., 4 (2002), 91-127.doi: 10.1023/A:1012934900316. |
[14] |
L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two, J. Comput. Anal. Appl., 4 (2002), 211-263.doi: 10.1023/A:1013151525487. |
[15] |
G. P. Menzala, On global classical solutions of a nonlinear wave equation, Appl. Anal., 10 (1980), 179-195.doi: 10.1080/00036818008839300. |
[16] |
S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66.doi: 10.1002/mana.200310104. |
[17] |
M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), 542-549.doi: 10.1016/0022-247X(77)90040-3. |
[18] |
Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206 (1991), 265-276.doi: 10.1007\%2FBF02571342. |
[19] |
M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac., 38 (1995), 417-431.doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml. |
[20] |
L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, NA, TMA, Series A: Theory and Methods, 70 (2009), 3943-3965.doi: 10.1016/j.na.2008.08.004. |
[21] |
K. Ono, On the global existence and decay of solutions for semilinear telegraph equations, Int. J. Applied Math., 2 (2000), 1121-1136.doi: 10.1002/(SICI)1099-1476(200004)23:6. |
[22] |
J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci., 23 (2000), 41-61.doi: 10.1002/(SICI)1099-1476(20000110)23:1. |
[23] |
M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Differential Equations, 73 (2001), 1-11.doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf. |
[24] |
M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 2002 (2002), 1-17.doi: 10.1155/S1085337502204133. |
[25] |
M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54 (2003), 959-976.doi: 10.1016/S0362-546X(03)00121-4. |
[26] |
L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions, NA, Series B: Real World Applications, 11 (2010), 1289-1303.doi: 10.1016/j.nonrwa.2009.02.018. |