September  2013, 12(5): 2001-2029. doi: 10.3934/cpaa.2013.12.2001

Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions

1. 

Nha Trang Educational College, 01 Nguyen Chanh Str., Nha Trang City, Vietnam

2. 

Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist.5, Ho Chi Minh City, Vietnam

Received  January 2012 Revised  November 2012 Published  January 2013

The paper is devoted to the study of a nonlinear wave equation with nonlocal boundary conditions of integral forms. First, we establish two local existence theorems by using Faedo-Galerkin method. Next, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions.
Citation: Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001
References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, NA, Series B: Real World Applications, 40 (2001), 1159-1188. doi: 10.1016/j.nonrwa.2010.08.025.

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547-561. doi: 10.1016/S0362-546X(99)00218-7.

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation, Electronic J. Differential Equations, 2006 (2006), 1-10. doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl., 12 (2005), 391-399. doi: 10.1007/s00030-005-0008-5.

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. and Math. Sci., 21 (1998), 533-548. doi: 10.1155/S016117129800074X.

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1, Academic Press, NewYork, 1969. doi: 10.1016/S0076-5392(08)62290-0.

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992), 613-623. doi: 10.1016/0362-546X(92)90097-X.

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions, Nonlinear Anal., 29 (1997), 1217-1230. doi: 10.1016/S0362-546X(97)87360-9.

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Prob., Hindawi Publishing Corporation, 2005 (2005), 337-358. doi: 10.1155/BVP.2005.337.

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, NA, TMA, Series A: Theory and Methods, 67 (2007), 842-864. doi: 10.1016/j.na.2006.06.044.

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation, Arab. J. for Science and Engineering, 26 (2001), 63-68.

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl., 4 (2002), 91-127. doi: 10.1023/A:1012934900316.

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two, J. Comput. Anal. Appl., 4 (2002), 211-263. doi: 10.1023/A:1013151525487.

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation, Appl. Anal., 10 (1980), 179-195. doi: 10.1080/00036818008839300.

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66. doi: 10.1002/mana.200310104.

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), 542-549. doi: 10.1016/0022-247X(77)90040-3.

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206 (1991), 265-276. doi: 10.1007\%2FBF02571342.

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac., 38 (1995), 417-431. doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, NA, TMA, Series A: Theory and Methods, 70 (2009), 3943-3965. doi: 10.1016/j.na.2008.08.004.

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations, Int. J. Applied Math., 2 (2000), 1121-1136. doi: 10.1002/(SICI)1099-1476(200004)23:6.

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci., 23 (2000), 41-61. doi: 10.1002/(SICI)1099-1476(20000110)23:1.

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Differential Equations, 73 (2001), 1-11. doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 2002 (2002), 1-17. doi: 10.1155/S1085337502204133.

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54 (2003), 959-976. doi: 10.1016/S0362-546X(03)00121-4.

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions, NA, Series B: Real World Applications, 11 (2010), 1289-1303. doi: 10.1016/j.nonrwa.2009.02.018.

show all references

References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, NA, Series B: Real World Applications, 40 (2001), 1159-1188. doi: 10.1016/j.nonrwa.2010.08.025.

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar, Nonlinear Anal., 43 (2001), 547-561. doi: 10.1016/S0362-546X(99)00218-7.

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation, Electronic J. Differential Equations, 2006 (2006), 1-10. doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl., 12 (2005), 391-399. doi: 10.1007/s00030-005-0008-5.

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. and Math. Sci., 21 (1998), 533-548. doi: 10.1155/S016117129800074X.

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1, Academic Press, NewYork, 1969. doi: 10.1016/S0076-5392(08)62290-0.

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition, Nonlinear Anal., 19 (1992), 613-623. doi: 10.1016/0362-546X(92)90097-X.

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions, Nonlinear Anal., 29 (1997), 1217-1230. doi: 10.1016/S0362-546X(97)87360-9.

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar, J. Boundary Value Prob., Hindawi Publishing Corporation, 2005 (2005), 337-358. doi: 10.1155/BVP.2005.337.

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, NA, TMA, Series A: Theory and Methods, 67 (2007), 842-864. doi: 10.1016/j.na.2006.06.044.

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation, Arab. J. for Science and Engineering, 26 (2001), 63-68.

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl., 4 (2002), 91-127. doi: 10.1023/A:1012934900316.

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two, J. Comput. Anal. Appl., 4 (2002), 211-263. doi: 10.1023/A:1013151525487.

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation, Appl. Anal., 10 (1980), 179-195. doi: 10.1080/00036818008839300.

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66. doi: 10.1002/mana.200310104.

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl., 60 (1977), 542-549. doi: 10.1016/0022-247X(77)90040-3.

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206 (1991), 265-276. doi: 10.1007\%2FBF02571342.

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac., 38 (1995), 417-431. doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, NA, TMA, Series A: Theory and Methods, 70 (2009), 3943-3965. doi: 10.1016/j.na.2008.08.004.

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations, Int. J. Applied Math., 2 (2000), 1121-1136. doi: 10.1002/(SICI)1099-1476(200004)23:6.

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci., 23 (2000), 41-61. doi: 10.1002/(SICI)1099-1476(20000110)23:1.

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Differential Equations, 73 (2001), 1-11. doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory, Electronic J. Differential Equations, 2002 (2002), 1-17. doi: 10.1155/S1085337502204133.

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54 (2003), 959-976. doi: 10.1016/S0362-546X(03)00121-4.

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions, NA, Series B: Real World Applications, 11 (2010), 1289-1303. doi: 10.1016/j.nonrwa.2009.02.018.

[1]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[2]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[3]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[4]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[5]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[6]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[7]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[8]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[9]

Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139

[10]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[11]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[12]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[13]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[14]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[15]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[16]

Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465

[17]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[18]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[19]

Sandra Lucente. Global existence for equivalent nonlinear special scale invariant damped wave equations. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021159

[20]

Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]