\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotically periodic solutions of neutral partial differential equations with infinite delay

Abstract Related Papers Cited by
  • In this paper we discuss the existence and uniqueness of asymptotically almost automorphic and $S$-asymptotically $\omega$-periodic mild solutions to some abstract nonlinear integro-differential equation of neutral type with infinite delay. We apply our results to neutral partial differential equations with infinite delay.
    Mathematics Subject Classification: 34K05; 34A12; 34A40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Abbas and D. Bahuguna, Almost periodic solutions of neutral functional differential equations, Comp. Math. Appl., 55 (2008), 2593-2601.doi: 10.1016/j.camwa.2007.00.011.

    [2]

    M. Adimy and K. Ezzinbi, Existence and linearized stability for partial neutral functional differential equations with nondense domains, Differential Equations and Dynamical Systems, 7 (1999), 371-417.

    [3]

    M. Adimy, K. Ezzinbi and M. Laklach, Spectral decomposition for partial neutral functional differential equations, Canadian Applied Math. Quart., 9 (2001), 1-34.

    [4]

    M. Adimy, A. Elazzouzi and K. Ezzinbi, Bohr-Neugebauer type theorem for some partial neutral functional differential equations, Nonlin. Anal., 66 (2007), 1145-1160.doi: 10.1016/j.na.2006.01.011.

    [5]

    R. P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of integral equations with infinite delay, J. Nonlin. Convex Anal., 11 (2010), 309-335.

    [6]

    R. P. Agarwal, T. Diagana and E. Hernández, Weighted pseudo almost periodic solutions to some partial neutral functional differential equations, J. Nonlin. Convex Anal., 8 (2007), 397-415.

    [7]

    R. P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Difference Equ., 2010 (2010), article ID 179750, 25 pp.doi: 10.1155/2010/179750.

    [8]

    R. P. Agarwal, B. de Andrade and C. Cuevas, Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlin. Anal.: Real World Appl.,} 11 (2010), 3532-3534.doi: 10.1016/j.nonrwa.2010.01.002.

    [9]

    R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(3) (2010), 973-1033.doi: 10.1007/s10440-008-9356-6.

    [10]

    M. Alia, K. Ezzinbi and S. Fatajou, Exponential dichotomy and pseudo almost automorphy for partial neutral functional differential equations, Nonlin. Anal., 71 (2009), 2210-2226.doi: 10.1016/j.na.2009.01.057.

    [11]

    E. G. Bazhlekova, "Fractional Evolution Equations in Banach Spaces," Thesis (Dr.) Technische Universiteit Eindhoven (The Netherlands), 2001.

    [12]

    M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340-1350.doi: 10.1016/j.jmaa.2007.06.021.

    [13]

    A. Berger, S. Siegmund and Y. Yi, On almost automorphic dynamics in symbolic lattices, Ergodic Theory Dynam. Syst., 24 (2004), 677-696.doi: 10.1017/S0143385703000609.

    [14]

    S. Boulite, L. Maniar and G. M. N'Guérékata, Almost automorphic solutions for hyperbolic semilinear evolution equations, Semigroup Forum, 71 (2005), 231-240.doi: 10.1007/s00233-005-0524-y.

    [15]

    H. Bounit and S. Hadd, Regular linear systems governed by neutral FDEs, J. Math. Anal. Appl., 320 (2006), 836-858.doi: 10.1016/j.jmaa.2005.07.048.

    [16]

    H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations," Springer, New York, 2011.

    [17]

    A. Caicedo and C. Cuevas, $S$-asymptotically $\omega$-periodic solutions of abstract partial neutral integro-differential equations, Functional Differential Equations, 17 (2010), 387-405.

    [18]

    A. Caicedo, C. Cuevas and H. Henríquez, Asymptotic periodicity for a class of partial integro-differential equations, ISRN Mathematical Analysis, 2011 (2011), Article ID 537890, 18 pp., doi: 10.5402/2011/537890.doi: 10.5402/2011/537890.

    [19]

    A. Caicedo, C. Cuevas, G. M. Mophou and G. M. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Institute, 349 (2012), 1-24.doi: 10.1016/j.jfranklin.2011.02.001.

    [20]

    C. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control, 17 (1979), 66-81.

    [21]

    E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discr. Contin. Dyn. Syst., (Supplement) (2007), 277-285.

    [22]

    C. Cuevas, G. N'Guérékata and M. Rabelo, Mild solutions for impulsive neutral functional differential equations with state-dependent delay, Semigroup Forum, 80 (2010), 375-390.doi: 10.1007/s00233-010-9213-6.

    [23]

    C. Cuevas, E. Hernández and M. Rabelo, The existence of solutions for impulsive neutral functional differential equations, Comput. Math. Appl., 58 (2009), 774-757.doi: 10.1016/j.camwa.2009.04.008.

    [24]

    C. Cuevas and C. Lizama, $S$-asymptotically $\omega$-periodic solutions for semilinear Volterra equations, Math. Meth. Appl. Sci., 33 (2010), 1628-1636.doi: 10.1002/mma.1284.

    [25]

    C. Cuevas and J. C. de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865-870.doi: 10.1016/j.aml.2008.07.013.

    [26]

    C. Cuevas and J. C. de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlin. Anal., 72 (2010), 1683-1689.doi: 10.1016/j.na.2009.09.007.

    [27]

    C. Cuevas and C. Lizama, Almost automorphic solutions to integral equations on the line, Semigroup Forum, 79 (2009), 461-472.doi: 10.1007/s00233-009-9154-0.

    [28]

    C. Cuevas and C. Lizama, Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. Math. Lett., 21 (2008), 1315-1319.doi: 10.1016/j.aml.2008.02.001.

    [29]

    B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semilinear Cauchy problems with non dense domain, Nonlin. Anal., 72 (2010), 3190-3208.doi: 10.1016/j.na.2009.12.016.

    [30]

    W. Desch, R. Grimmer and W. Schappacher, Well-posedness and wave propagation for a class of integrodifferential equations in Banach space, J. Differential Equations, 74 (1988), 391-411.

    [31]

    T. Diagana, H. R. Henríquez and E. Hernández, Almost automorphic mild solutions of some partial neutral functional differential equations and applications, Nonlin. Anal., 69 (2008), 1485-1493.doi: 10.1016/j.na.2007.06.048.

    [32]

    T. Diagana, E. Hernández and J. P. C. dos Santos, Existence of asymptotically almost automorphic solutions to some abstract partial neutral integro-differential equations, Nonlin. Anal., 71 (2009), 248-257.doi: 10.1016/j.na.2008.10.046.

    [33]

    T. Diagana and R. P. Agarwal, Existence of pseudo almost automorphic solutions for the heat equation with $S^p$-pseudo almost automorphic coefficients, Boundary Value Problems, 2009 (2009), Article ID 182527, 19 pages. doi:10.1155/2009/182527doi: 10.1155/2009/182527.

    [34]

    H.-S. Ding, J. Liang, G. N'Guérékata and T.-J. Xiao, Existence of positive almost automorphic solutions to neutral nonlinear integral equations, Nonlin. Anal., 69 (2008), 1188-1199.doi: 10.1016/j.na.2007.06.017.

    [35]

    H. S. Ding, T. J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions, J. Math. Anal. Appl., 338 (2008), 141-151.doi: 10.1016/j.jmaa.2007.05.014.

    [36]

    J. P. C. dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23 (2010), 960-965.doi: 10.1016/j.aml.2010.04.016.

    [37]

    K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer-Verlag, New York, 2000.

    [38]

    K. Ezzinbi and G. M. N'Guérékata, Massera type theorem for almost automorphic solutions of functional differential equations of neutral type, J. Math. Anal. Appl., 316 (2006), 707-721.doi: http://dx.doi.org/10.1016/j.jmaa.2005.04.074.

    [39]

    K. Ezzinbi and G. M. N'Guérékata, Almost automorphic solutions for some partial functional differential equations, J. Math. Anal. Appl., 328 (2007), 344-358.doi: 10.1016/j.jmaa.2006.05.036.

    [40]

    K. Ezzinbi, S. Fatajou and G. M. N'Guérékata, Pseudo-almost-automorphic solutions to some neutral partial functional differential equations in Banach spaces, Nonlin. Anal., 70 (2009), 1641-1647.doi: 10.1016/j.na.2008.02.039.

    [41]

    F. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi eds.), Springer, New York, 1997, 223-276.

    [42]

    R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349.

    [43]

    R. Grimmer and J. Prüss, On linear Volterra equations in Banach spaces. Hyperbolic partial differential equations II, Comput. Math. Appl., 11 (1985), 189-205.

    [44]

    G. Gripenberg, S.-O. Londen and O. Staffans, "Volterra Integral and Functional Equations," Cambridge University Press, Cambridge, New York, 1990.

    [45]

    S. Guo, Equivariant normal forms for neutral functional differential equations, Nonlinear Dynam., 61 (2010), 311?329.doi: 10.1007/s11071-009-9651-4.

    [46]

    S. Hadd, Singular functional differential equations of neutral type in Banach spaces, J. Funct. Anal., 254 (2008), 2069-2091.doi: 10.1016/j.jfa.2008.01.011.

    [47]

    J. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer Verlag, New York, 1993.

    [48]

    J. K. Hale, Partial neutral functional differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994), 339-344.

    [49]

    J. Hale, Coupled oscillators on a circle, Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, 1 (1994), 441-457.

    [50]

    H. R. Henríquez, E. Hernández and J. C. dos Santos, Asymptotically almost periodic and almost periodic solutions for partial neutral integrodifferential equations, Zeitschrift für Analysis und ihre Anwendungen, 26 (2007), 363-375.

    [51]

    H. R. Henríquez, M. Pierri and P. Táboas, Existence of $S$-asymptotically $\omega$-periodic solutions for abstract neutral functional differential equations, Bull. Austral. Math. Soc., 78 (2008), 365-382.

    [52]

    H. R. Henríquez, Periodic solutions of abstract neutral functional differential equations with infinite delay, Acta Math. Hungar., 121 (2008), 203-227.doi: 10.1007/s10474-008-7009-x.

    [53]

    H. R. Henríquez, M. Pierri and P. Táboas, On $S-$asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.doi: 10.1016/j.jmaa.2008.02.023.

    [54]

    H. R. Henríquez and C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay, Nonlin. Anal., 71 (2009), 6029-6037.doi: 10.1016/j.na.2009.05.042.

    [55]

    E. Hernández and H. R. Henríquez, Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 499-522.doi: 10.1006/jmaa.1997.5899.

    [56]

    E. Hernández and H. R. Henríquez, Existence results for partial neutral functional equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 452-475.doi: 10.1006/jmaa.1997.5875.

    [57]

    E. Hernández, M. Rabelo and H. R. Henríquez, Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331 (2007), 1135-1158.doi: 10.1016/j.jmaa.2006.09.043.

    [58]

    Y. Hino, S. Murakami and T. Naito, "Functional-Differential Equations with Infinite Delay," Lecture Notes in Mathematics, 1473, Springer-Berlin, 2002.

    [59]

    V. Lakshmikantham, Theory of fractional functional differential equations, Nonlin. Anal., 69 (2008), 3337-3343.doi: 10.1016/j.na.2007.09.025.

    [60]

    V. Lakshmikantham and J. Vasundhara Devi, Theory of Fractional Differential Equations in a Banach Space, European J. of Pure and Applied Math., 1 (2008), 38-45.

    [61]

    G. Liu, W. Yan and J. Yan, Periodic solutions for a class of neutral functional differential equations with infinite delay, Nonlin. Anal., 71 (2009), 604-613.doi: 10.1016/j.na.2008.10.096.

    [62]

    A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser, Basel, 1995.

    [63]

    R. K. Miller, An integro-differential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66 (1978), 313-332.

    [64]

    G. Mophou and G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322.doi: 10.1007/s00233-008-9117-x.

    [65]

    G. Mophou and G. M. N'Guérékata, On some classes of almost automorphic functions and applications to fractional differential equations, Comput. Math. Appl., 59 (2010), 1310-1317.doi: 10.1016/j.camwa.2009.05.008.

    [66]

    G. M. N'Guérékata, Sur les solutions presque automorphes d'équations différentielles abstraites, Ann. Sci. Math. Québec, 5 (1981), 69-79.

    [67]

    G. M. N'Guérékata, "Topics in Almost Automorphy," Springer Science + Business Media, Inc, New York, 2005.

    [68]

    G. M. N'Guérékata, "Almost Automorphic and Almost Periodic Functions in Abstract Spaces," Kluwer Acad. Publ., New York, 2001.

    [69]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, New York, 1983.

    [70]

    J. Prüss, "Evolutionary Integral Equations and Applications," in "Monographs in Mathematics," 87, Birkhäuser Verlag, Basel, 1993.

    [71]

    B. N. Sadovskii, A fixed point principle, Functional Anal. Appl., 1 (1967), 74-76.

    [72]

    W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, in "Mem. Amer. Math. Soc.," 136, No. 647, 1998.

    [73]

    J. Wu, "Theory and Applications of Partial Functional Differential Equations," Springer-Verlag, New York, 1996.

    [74]

    J. Wu and H. Xia, Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Differential Equations, 124 (1996), 247-278.doi: 10.1006/jdeq.1996.0009.

    [75]

    J. Wu and H. Xia, Rotating waves in neutral partial functional differential equations, J. Dynam. Differ. Equ., 11 (1999), 209-238.doi: 10.1023/A:1021973228398.

    [76]

    Y. Yi, On almost automorphic oscillations, in "Differences and Differential Equations," Fields Inst. Commun., 42, Amer. Math. Soc., Providence, RI, 2004, 75-99.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return