\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Fractional Ginzburg-Landau equation with distributional initial data

Abstract Related Papers Cited by
  • The paper is concerned with real fractional Ginzburg-Landau equation. Existence and uniqueness of local and global mild solution with distributional initial data are obtained by contraction mapping principle and carefully choosing the working space, and Gevrey regularity of mild solution for flat torus case is discussed.
    Mathematics Subject Classification: Primary: 35Q99, 35D10; Secondary: 78A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics," Oxford University Press, Oxford, 2005.

    [2]

    V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'' Springer-Verlag, Berlin Heidelberg, jointly with Higher Education Press, Beijing, 2011.

    [3]

    G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays? Nucl. Phys., B75A (1999), 191-193.

    [4]

    M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339-3352.doi: 10.1063/1.1769611.

    [5]

    G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon, Physica D., 193 (2004), 128-147.doi: 10.1016/j.physd.2004.01.014.

    [6]

    F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283-299.doi: 10.1016/S0377-0427(00)00294-6.

    [7]

    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.doi: 10.1016/S0370-1573(00)00070-3.

    [8]

    H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281.doi: 10.1016/S1007-5704(03)00049-2.

    [9]

    V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos., 16 (2006), 023110.doi: 10.1063/1.2197167.

    [10]

    Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations, Phys. Rev. E., 78 (2008), 060102.

    [11]

    V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.doi: 10.1016/j.physa.2005.02.047.

    [12]

    A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media, Phys. Lett. A., 337 (2005), 75-80.doi: 10.1016/j.physleta.2005.01.047.

    [13]

    V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation, J. Phys. A: Math. Gen., 39 (2006), 8395-8407.

    [14]

    J. Li and L. Xia Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces, Appl. Anal., in press, DOI:10.1080/00036811.2011.649733. doi: 10.1080/00036811.2011.649733.

    [15]

    J. Wu, Well-posedness of a semi-linear heat equation with weak initial data, J. Fourier. Anal. Appl., 4 (1998), 629-642.doi: 10.1007/BF02498228.

    [16]

    T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not., 10 (1994), 435-444.doi: 10.1155/S1073792894000474.

    [17]

    J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Elect. J. Differ. Equ., 2001 (2001), 1-13.

    [18]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations," Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [19]

    B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'' Chinese ed, Science Press, Beijing, China, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return