-
Previous Article
One-dimensional symmetry for semilinear equations with unbounded drift
- CPAA Home
- This Issue
-
Next Article
The Fractional Ginzburg-Landau equation with distributional initial data
Existence of positive steady states for a predator-prey model with diffusion
1. | Department of Mathematics, Dalian Nationalities University, Dalian 116600, China |
2. | College of Mathematics and Information Science, Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, China |
3. | School of Computer Science, Dalian Nationalities University, Dalian 116600, China |
4. | College of Electromechanical and Information Engineering, Dalian Nationalities University, Dalian 116600, China |
References:
[1] |
R. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 247-272. |
[2] |
E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal, 34 (2002), 292-314.
doi: 10.1137/S0036141001387598. |
[3] |
Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[4] |
Y. H. Du and S. J. Li, Positive solutions with prescribed patterns in some simple semilinear equations, Differential Integral Equations, 15 (2002), 805-822. |
[5] |
Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc, 349 (1997), 2443-2475.
doi: 10.1090/S0002-9947-97-01842-4. |
[6] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[7] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Tran. Amer. Math. Soc, 359 (2007), 4557-4593.
doi: 10.1090/S0002-9947-07-04262-6. |
[8] |
J. M. Fraile, P. K. Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.
doi: 10.1006/jdeq.1996.0071. |
[9] |
R. T. Gong and S. B. Hsu, Stability analysis for a class of diffusive coupled system with application to population biology, Can. Appl. Math. Quart, 8 (2000), 79-96. |
[10] |
K. Hasík, On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59-74.
doi: 10.1007/s00285-009-0257-8. |
[11] |
S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwannese J. Mathematics, 9 (2005), 151-173. |
[12] |
W. Ko, K. Ryu, A qualitative study on general Gause type predator-prey models with constant diffusion rates, J. Math. Anal. Appl., 344 (2008), 217-230.
doi: 10.1016/j.jmaa.2008.03.006. |
[13] |
W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey models with non-monotonic functional response, Nonlinear Anal. RWA, 10 (2009), 2558-2573.
doi: 10.1016/j.nonrwa.2008.05.012. |
[14] |
Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990), 463-474.
doi: 10.1007/BF00178329. |
[15] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. |
[16] |
Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[17] |
Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131. |
[18] |
J. D. Murray, "Mathematical Biology," Springer-Verlag, Berlin, 1989. |
[19] |
T. C. Ouyang, On the positive solutions of semilinear equations $\Delta u + \lambda u-hu^p = 0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503-527.
doi: 10.1090/S0002-9947-1992-1055810-7. |
[20] |
Peter Y. H. Pang and M. X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London. Math. Soc., 88 (2004), 135-157.
doi: 10.1112/S0024611503014321. |
[21] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, New York, 1994. |
[22] |
M. X. Wang, Peter Y. H. Pang and W. Y. Chen, Sharp spatial pattern of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA Journal of Applied Mathematics, 73 (2008), 815-835.
doi: 10.1093/imamat/hxn016. |
show all references
References:
[1] |
R. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 247-272. |
[2] |
E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal, 34 (2002), 292-314.
doi: 10.1137/S0036141001387598. |
[3] |
Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.
doi: 10.1016/j.jde.2004.05.010. |
[4] |
Y. H. Du and S. J. Li, Positive solutions with prescribed patterns in some simple semilinear equations, Differential Integral Equations, 15 (2002), 805-822. |
[5] |
Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc, 349 (1997), 2443-2475.
doi: 10.1090/S0002-9947-97-01842-4. |
[6] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[7] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Tran. Amer. Math. Soc, 359 (2007), 4557-4593.
doi: 10.1090/S0002-9947-07-04262-6. |
[8] |
J. M. Fraile, P. K. Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.
doi: 10.1006/jdeq.1996.0071. |
[9] |
R. T. Gong and S. B. Hsu, Stability analysis for a class of diffusive coupled system with application to population biology, Can. Appl. Math. Quart, 8 (2000), 79-96. |
[10] |
K. Hasík, On a predator-prey system of Gause type, J. Math. Biol., 60 (2010), 59-74.
doi: 10.1007/s00285-009-0257-8. |
[11] |
S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwannese J. Mathematics, 9 (2005), 151-173. |
[12] |
W. Ko, K. Ryu, A qualitative study on general Gause type predator-prey models with constant diffusion rates, J. Math. Anal. Appl., 344 (2008), 217-230.
doi: 10.1016/j.jmaa.2008.03.006. |
[13] |
W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey models with non-monotonic functional response, Nonlinear Anal. RWA, 10 (2009), 2558-2573.
doi: 10.1016/j.nonrwa.2008.05.012. |
[14] |
Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990), 463-474.
doi: 10.1007/BF00178329. |
[15] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. |
[16] |
Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[17] |
Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131. |
[18] |
J. D. Murray, "Mathematical Biology," Springer-Verlag, Berlin, 1989. |
[19] |
T. C. Ouyang, On the positive solutions of semilinear equations $\Delta u + \lambda u-hu^p = 0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503-527.
doi: 10.1090/S0002-9947-1992-1055810-7. |
[20] |
Peter Y. H. Pang and M. X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London. Math. Soc., 88 (2004), 135-157.
doi: 10.1112/S0024611503014321. |
[21] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, New York, 1994. |
[22] |
M. X. Wang, Peter Y. H. Pang and W. Y. Chen, Sharp spatial pattern of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA Journal of Applied Mathematics, 73 (2008), 815-835.
doi: 10.1093/imamat/hxn016. |
[1] |
Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 |
[2] |
Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173 |
[3] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[4] |
Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026 |
[5] |
Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737 |
[6] |
Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 759-779. doi: 10.3934/dcds.2021136 |
[7] |
R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423 |
[8] |
Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180 |
[9] |
Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 |
[10] |
Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061 |
[11] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[12] |
J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059 |
[13] |
Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048 |
[14] |
Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046 |
[15] |
Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1649-1670. doi: 10.3934/dcdsb.2019245 |
[16] |
Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172 |
[17] |
Pankaj Kumar, Shiv Raj. Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021035 |
[18] |
Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 |
[19] |
Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3335-3356. doi: 10.3934/dcdsb.2020064 |
[20] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]