Advanced Search
Article Contents
Article Contents

On behavior of signs for the heat equation and a diffusion method for data separation

Abstract Related Papers Cited by
  • Consider the solution $u(x,t)$ of the heat equation with initial data $u_0$. The diffusive sign $S_D[u_0](x)$ is defined by the limit of sign of $u(x,t)$ as $t\to 0$. A sufficient condition for $x\in R^d$ and $u_0$ such that $S_D[u_0](x)$ is well-defined is given. A few examples of $u_0$ violating and fulfilling this condition are given. It turns out that this diffusive sign is also related to variational problem whose energy is the Dirichlet energy with a fidelity term. If initial data is a difference of characteristic functions of two disjoint sets, it turns out that the boundary of the set $S_D[u_0](x) = 1$ (or $-1$) is roughly an equi-distance hypersurface from $A$ and $B$ and this gives a separation of two data sets.
    Mathematics Subject Classification: Primary: 35K05; Secondary: 35B40.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'' Progress in Mathematics, 223, Birkhäuser Verlag, 2004.doi: 10.1007/978-3-0348-7928-6.


    S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.doi: 10.1515/crll.1988.390.79.


    A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, Multiscale Modeling and Simulation, 10 (2012), 1090-1118.doi: 10.1137/11083109X.


    M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension, J. Differential Equations, 252 (2012), 4455-4480.doi: 10.1016/j.jde.2012.01.003.


    A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional, Confluentes Mathematici, 3 (2011), 617-635.doi: 10.1142/S1793744211000461.


    A. Chambolle, An algorithm for mean curvature motion, Interfaces and free boundaries, 6 (2004), 195-218.doi: 10.4171/IFB/97.


    X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.doi: 10.1016/0022-0396(92)90146-E.


    X.-Y. Chen, A strong unique continuation theorem for parabolic equations, Math. Ann., 311 (1998), 603-630.doi: 10.1007/s002080050202.


    X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.doi: 10.1016/0022-0396(89)90081-8.


    R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci., 102 (2005), 7426-7431.doi: 10.1073/pnas.0500334102.


    N. Cristianini and J. Shawe-Taylor, "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,'' Cambridge University Press, 2000.


    M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems, Japan J. Indust. Appl. Math., 27(2010), 323-345.doi: 10.1007/s13160-010-0020-y.


    M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-similar Solutions,'' Progress in Nonlinear Differential Equations and Their Applications, 79, Birkhäuser, Boston, 2010.doi: 10.1007/978-0-8176-4651-6.


    D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 598 (1985), 165-205.doi: 10.1016/0022-0396(85)90153-6.


    K. Kielak, P. B. Mucha and P. RybkaAlmost classical solutions to the total variation flow. (to appear in Journal of Evolution Equations) doi: 10.1007/s00028-012-0167-x.


    H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 401-441.


    L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza: il Teorema di Modica-Mortola, Boll. Un. Mat. Ital., (B5) (1977), 285-299.


    K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleighungen, J. Reine Angew. Math., 211 (1962), 78-94.doi: 10.1515/crll.1962.211.78.


    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'' Englewood Cliffs, 1967.


    W. Ring, Structural properties of solutions to total variation regularization problems, M2AN Math. Model. Numer. Anal., 34 (2000), 799-811.doi: 10.1051/m2an:2000104.


    L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.


    G. Steidl, Supervised learning by support vector machines, "Handbook of Mathematical Methods in Imaging'' (O. Scherzer ed.), vol 3, Springer, 2011, 959-1013.


    P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260.doi: 10.1007/BF00253122.


    D. G. Widder, "The Heat Equations,'' Academic Press, New York, 1975.

  • 加载中

Article Metrics

HTML views() PDF downloads(96) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint