\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On behavior of signs for the heat equation and a diffusion method for data separation

Abstract Related Papers Cited by
  • Consider the solution $u(x,t)$ of the heat equation with initial data $u_0$. The diffusive sign $S_D[u_0](x)$ is defined by the limit of sign of $u(x,t)$ as $t\to 0$. A sufficient condition for $x\in R^d$ and $u_0$ such that $S_D[u_0](x)$ is well-defined is given. A few examples of $u_0$ violating and fulfilling this condition are given. It turns out that this diffusive sign is also related to variational problem whose energy is the Dirichlet energy with a fidelity term. If initial data is a difference of characteristic functions of two disjoint sets, it turns out that the boundary of the set $S_D[u_0](x) = 1$ (or $-1$) is roughly an equi-distance hypersurface from $A$ and $B$ and this gives a separation of two data sets.
    Mathematics Subject Classification: Primary: 35K05; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'' Progress in Mathematics, 223, Birkhäuser Verlag, 2004.doi: 10.1007/978-3-0348-7928-6.

    [2]

    S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.doi: 10.1515/crll.1988.390.79.

    [3]

    A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, Multiscale Modeling and Simulation, 10 (2012), 1090-1118.doi: 10.1137/11083109X.

    [4]

    M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension, J. Differential Equations, 252 (2012), 4455-4480.doi: 10.1016/j.jde.2012.01.003.

    [5]

    A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional, Confluentes Mathematici, 3 (2011), 617-635.doi: 10.1142/S1793744211000461.

    [6]

    A. Chambolle, An algorithm for mean curvature motion, Interfaces and free boundaries, 6 (2004), 195-218.doi: 10.4171/IFB/97.

    [7]

    X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.doi: 10.1016/0022-0396(92)90146-E.

    [8]

    X.-Y. Chen, A strong unique continuation theorem for parabolic equations, Math. Ann., 311 (1998), 603-630.doi: 10.1007/s002080050202.

    [9]

    X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.doi: 10.1016/0022-0396(89)90081-8.

    [10]

    R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci., 102 (2005), 7426-7431.doi: 10.1073/pnas.0500334102.

    [11]

    N. Cristianini and J. Shawe-Taylor, "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,'' Cambridge University Press, 2000.

    [12]

    M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems, Japan J. Indust. Appl. Math., 27(2010), 323-345.doi: 10.1007/s13160-010-0020-y.

    [13]

    M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-similar Solutions,'' Progress in Nonlinear Differential Equations and Their Applications, 79, Birkhäuser, Boston, 2010.doi: 10.1007/978-0-8176-4651-6.

    [14]

    D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 598 (1985), 165-205.doi: 10.1016/0022-0396(85)90153-6.

    [15]

    K. Kielak, P. B. Mucha and P. RybkaAlmost classical solutions to the total variation flow. (to appear in Journal of Evolution Equations) doi: 10.1007/s00028-012-0167-x.

    [16]

    H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 401-441.

    [17]

    L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza: il Teorema di Modica-Mortola, Boll. Un. Mat. Ital., (B5) (1977), 285-299.

    [18]

    K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleighungen, J. Reine Angew. Math., 211 (1962), 78-94.doi: 10.1515/crll.1962.211.78.

    [19]

    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'' Englewood Cliffs, 1967.

    [20]

    W. Ring, Structural properties of solutions to total variation regularization problems, M2AN Math. Model. Numer. Anal., 34 (2000), 799-811.doi: 10.1051/m2an:2000104.

    [21]

    L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

    [22]

    G. Steidl, Supervised learning by support vector machines, "Handbook of Mathematical Methods in Imaging'' (O. Scherzer ed.), vol 3, Springer, 2011, 959-1013.

    [23]

    P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260.doi: 10.1007/BF00253122.

    [24]

    D. G. Widder, "The Heat Equations,'' Academic Press, New York, 1975.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(96) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return