\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem

Abstract Related Papers Cited by
  • We study the bifurcation diagrams of positive solutions of the $p$-Laplacian Dirichlet problem \begin{eqnarray*} (\varphi_p(u'(x)))'+f_\lambda(u(x))=0, -1 < x < 1, \\ u(-1)=u(1)=0, \end{eqnarray*} where $\varphi_p(y)=|y|^{p-2}y$, $(\varphi_p(u'))'$ is the one-dimensional $p$-Laplacian, $p>1$, the nonlinearity $f_\lambda(u)=\lambda g(u)-h(u),$ $g,h\in C[0,\infty)\cap C^2(0,\infty )$, and $\lambda >0$ is a bifurcation parameter. Under certain hypotheses on functions $g$ and $h$, we give a complete classification of bifurcation diagrams. We prove that, on the $(\lambda, |u|_\infty)$-plane, each bifurcation diagram consists of exactly one curve which has exactly one turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions for each $\lambda >0.$ In addition, we show the evolution phenomena of bifurcation diagrams of polynomial nonlinearities with positive coefficients.
    Mathematics Subject Classification: 34B15, 34B18.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. G. Cheng, Exact number of positive solutions for a class of semipositone problems, J. Math. Anal. Appl., 280 (2003), 197-208.doi: 10.1016/S0022-247X(02)00539-5.

    [2]

    J. G. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian, J. Math. Anal. Appl., 311 (2005), 381-388.doi: 10.1016/j.jmaa.2005.02.057.

    [3]

    J. G. Cheng, Exact number of positive solutions for semipositone problems, J. Math. Anal. Appl., 313 (2006), 322-341.doi: 10.1016/j.jmaa.2005.09.043.

    [4]

    J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations," Research Notes in Mathematics, 106, Pitman, Boston, MA, 1985.

    [5]

    J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction, Extracta Math., 16 (2001), 303-341.

    [6]

    J. I. Díaz and J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 587-592.doi: 10.1016/S0764-4442(00)80006-3.

    [7]

    J. I. Díaz, J. Hernández and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl., 352 (2009), 449-474.doi: 10.1016/j.jmaa.2008.07.073.

    [8]

    T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.

    [9]

    A. Lakmeche and A. Hammoudi, Multiple positive solutions of the one-dimensional $p$-Laplacian, J. Math. Anal. Appl., 317 (2006), 43-49.doi: 10.1016/j.jmaa.2005.10.040.

    [10]

    H. L. Royden, "Real Analysis," Macmillan, New York, 1988.

    [11]

    J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.doi: 10.1016/0022-0396(81)90077-2.

    [12]

    S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, J. Math. Anal. Appl., 291 (2004), 128-153.doi: 10.1016/j.jmaa.2003.10.021.

    [13]

    Z. L. Wei and C. C. Pang, Exact structure of positive solutions for some $p$-Laplacian equations, J. Math. Anal. Appl., 301 (2005), 52-64.doi: 10.1016/j.jmaa.2004.06.058.

    [14]

    R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis," Marcel Dekker, New York, 1977.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return