\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Almost global existence for exterior Neumann problems of semilinear wave equations in $2$D

Abstract Related Papers Cited by
  • The aim of this article is to prove an "almost" global existence result for some semilinear wave equations in the plane outside a bounded convex obstacle with the Neumann boundary condition.
    Mathematics Subject Classification: Primary: 35L20; Secondary: 35L71.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-737.doi: 10.1002/cpa.3160120405.

    [2]

    V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations, NoDEA, 11 (2004), 529-555.doi: 10.1007/s00030-004-2027-z.

    [3]

    P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential Equations, 18 (1993), 895-916.doi: 10.1080/03605309308820955.

    [4]

    M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.doi: 10.2969/jmsj/02040580.

    [5]

    S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain, J. Math. Soc. Japan, 60 (2008), 1135-1170.doi: 10.2969/jmsj/06041135.

    [6]

    S. Katayama and H. KuboLower bound of the lifespan of solutions to semilinear wave equations in an exterior domain, to appear in J. Hyper. Differential Equations, arXiv:1009.1188.

    [7]

    S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.doi: 10.1002/cpa.3160380305.

    [8]

    H. Kubo, Uniform decay estimates for the wave equation in an exterior domain, in "Asymptotic Analysis and Singularities," Advanced Studies in Pure Mathematics 47-1, Math. Soc. of Japan, (2007), 31-54.

    [9]

    H. KuboGlobal existence for nonlinear wave equations in an exterior domain in 2D, preprint, arXiv:1204.3725v2.

    [10]

    K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.

    [11]

    C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.doi: 10.1002/cpa.3160280204.

    [12]

    P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation, J. Differential Equations, 194 (2003), 221-236.doi: 10.1016/S0022-0396(03)00189-X.

    [13]

    Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z, 202 (1989), 1-64.doi: 10.1007/BF01180683.

    [14]

    Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.doi: 10.1007/BF01164023.

    [15]

    H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications, Transactions Amer. Math. Soc., 364 (2012), 3329-3347.doi: 10.1090/S0002-9947-2012-05607-8.

    [16]

    B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems, Uspehi Mat. Nauk, 30 (1975), 3-55 (Russian).

    [17]

    Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary, J. Math. Anal. Appl., 374 (2011), 585-601.doi: 10.1016/j.jmaa.2010.08.052.

    [18]

    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-737.

    [19]

    V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations, NoDEA, 11 (2004), 529-555.

    [20]

    P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential Equations, 18 (1993), 895-916.

    [21]

    M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.

    [22]

    S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain, J. Math. Soc. Japan, 60 (2008), 1135-1170.

    [23]

    S. Katayama and H. KuboLower bound of the lifespan of solutions to semilinear wave equations in an exterior domain, to appear in J. Hyper. Differential Equations, arXiv:1009.1188.

    [24]

    S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.

    [25]

    H. Kubo, Uniform decay estimates for the wave equation in an exterior domain, in "Asymptotic Analysis and Singularities," Advanced Studies in Pure Mathematics 47-1, Math. Soc. of Japan, (2007), 31-54.

    [26]

    H. KuboGlobal existence for nonlinear wave equations in an exterior domain in 2D, preprint, arXiv:1204.3725v2.

    [27]

    K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.

    [28]

    C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.

    [29]

    P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation, J. Differential Equations, 194 (2003), 221-236.

    [30]

    Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z, 202 (1989), 1-64.

    [31]

    Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.

    [32]

    H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications, Transactions Amer. Math. Soc., 364 (2012), 3329-3347.

    [33]

    B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems, Uspehi Mat. Nauk, 30 (1975), 3-55 (Russian).

    [34]

    Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary, J. Math. Anal. Appl., 374 (2011), 585-601.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return