November  2013, 12(6): 2331-2360. doi: 10.3934/cpaa.2013.12.2331

Almost global existence for exterior Neumann problems of semilinear wave equations in $2$D

1. 

Department of Mathematics, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan

2. 

Division of Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

3. 

Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari

Received  August 2012 Revised  January 2013 Published  May 2013

The aim of this article is to prove an "almost" global existence result for some semilinear wave equations in the plane outside a bounded convex obstacle with the Neumann boundary condition.
Citation: Soichiro Katayama, Hideo Kubo, Sandra Lucente. Almost global existence for exterior Neumann problems of semilinear wave equations in $2$D. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2331-2360. doi: 10.3934/cpaa.2013.12.2331
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations,, NoDEA, 11 (2004), 529.  doi: 10.1007/s00030-004-2027-z.  Google Scholar

[3]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[4]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.  doi: 10.2969/jmsj/02040580.  Google Scholar

[5]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.  doi: 10.2969/jmsj/06041135.  Google Scholar

[6]

S. Katayama and H. Kubo, Lower bound of the lifespan of solutions to semilinear wave equations in an exterior domain,, to appear in J. Hyper. Differential Equations, ().   Google Scholar

[7]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[8]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, (2007), 47.   Google Scholar

[9]

H. Kubo, Global existence for nonlinear wave equations in an exterior domain in 2D, preprint,, \arXiv{1204.3725v2}., ().   Google Scholar

[10]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[11]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.  doi: 10.1002/cpa.3160280204.  Google Scholar

[12]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.  doi: 10.1016/S0022-0396(03)00189-X.  Google Scholar

[13]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z, 202 (1989), 1.  doi: 10.1007/BF01180683.  Google Scholar

[14]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.  doi: 10.1007/BF01164023.  Google Scholar

[15]

H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications,, Transactions Amer. Math. Soc., 364 (2012), 3329.  doi: 10.1090/S0002-9947-2012-05607-8.  Google Scholar

[16]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

[17]

Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary,, J. Math. Anal. Appl., 374 (2011), 585.  doi: 10.1016/j.jmaa.2010.08.052.  Google Scholar

[18]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.   Google Scholar

[19]

V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations,, NoDEA, 11 (2004), 529.   Google Scholar

[20]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.   Google Scholar

[21]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.   Google Scholar

[22]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.   Google Scholar

[23]

S. Katayama and H. Kubo, Lower bound of the lifespan of solutions to semilinear wave equations in an exterior domain,, to appear in J. Hyper. Differential Equations, ().   Google Scholar

[24]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.   Google Scholar

[25]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, (2007), 47.   Google Scholar

[26]

H. Kubo, Global existence for nonlinear wave equations in an exterior domain in 2D, preprint,, \arXiv{1204.3725v2}., ().   Google Scholar

[27]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[28]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.   Google Scholar

[29]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.   Google Scholar

[30]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z, 202 (1989), 1.   Google Scholar

[31]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.   Google Scholar

[32]

H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications,, Transactions Amer. Math. Soc., 364 (2012), 3329.   Google Scholar

[33]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

[34]

Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary,, J. Math. Anal. Appl., 374 (2011), 585.   Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations,, NoDEA, 11 (2004), 529.  doi: 10.1007/s00030-004-2027-z.  Google Scholar

[3]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.  doi: 10.1080/03605309308820955.  Google Scholar

[4]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.  doi: 10.2969/jmsj/02040580.  Google Scholar

[5]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.  doi: 10.2969/jmsj/06041135.  Google Scholar

[6]

S. Katayama and H. Kubo, Lower bound of the lifespan of solutions to semilinear wave equations in an exterior domain,, to appear in J. Hyper. Differential Equations, ().   Google Scholar

[7]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.  doi: 10.1002/cpa.3160380305.  Google Scholar

[8]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, (2007), 47.   Google Scholar

[9]

H. Kubo, Global existence for nonlinear wave equations in an exterior domain in 2D, preprint,, \arXiv{1204.3725v2}., ().   Google Scholar

[10]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[11]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.  doi: 10.1002/cpa.3160280204.  Google Scholar

[12]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.  doi: 10.1016/S0022-0396(03)00189-X.  Google Scholar

[13]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z, 202 (1989), 1.  doi: 10.1007/BF01180683.  Google Scholar

[14]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.  doi: 10.1007/BF01164023.  Google Scholar

[15]

H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications,, Transactions Amer. Math. Soc., 364 (2012), 3329.  doi: 10.1090/S0002-9947-2012-05607-8.  Google Scholar

[16]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

[17]

Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary,, J. Math. Anal. Appl., 374 (2011), 585.  doi: 10.1016/j.jmaa.2010.08.052.  Google Scholar

[18]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.   Google Scholar

[19]

V. Georgiev and S. Lucente, Decay for Nonlinear Klein-Gordon Equations,, NoDEA, 11 (2004), 529.   Google Scholar

[20]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions,, Comm. Partial Differential Equations, 18 (1993), 895.   Google Scholar

[21]

M. Ikawa, Mixed problems for hyperbolic equations of second order,, J. Math. Soc. Japan, 20 (1968), 580.   Google Scholar

[22]

S. Katayama and H. Kubo, An alternative proof of global existence for nonlinear wave equations in an exterior domain,, J. Math. Soc. Japan, 60 (2008), 1135.   Google Scholar

[23]

S. Katayama and H. Kubo, Lower bound of the lifespan of solutions to semilinear wave equations in an exterior domain,, to appear in J. Hyper. Differential Equations, ().   Google Scholar

[24]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation,, Comm. Pure Appl. Math., 38 (1985), 321.   Google Scholar

[25]

H. Kubo, Uniform decay estimates for the wave equation in an exterior domain,, in, (2007), 47.   Google Scholar

[26]

H. Kubo, Global existence for nonlinear wave equations in an exterior domain in 2D, preprint,, \arXiv{1204.3725v2}., ().   Google Scholar

[27]

K. Kubota, Existence of a global solutions to a semi-linear wave equation with initial data of non-compact support in low space dimensions,, Hokkaido Math. J., 22 (1993), 123.   Google Scholar

[28]

C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation,, Comm. Pure Appl. Math., 28 (1975), 229.   Google Scholar

[29]

P. Secchi and Y. Shibata, On the decay of solutions to the 2D Neumann exterior problem for the wave equation,, J. Differential Equations, 194 (2003), 221.   Google Scholar

[30]

Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order,, Math. Z, 202 (1989), 1.   Google Scholar

[31]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain,, Math. Z., 191 (1986), 165.   Google Scholar

[32]

H. F. Smith, C. D. Sogge and C. Wang, Strichartz estimates for Dirichlet-Wave equations in two dimensions with applications,, Transactions Amer. Math. Soc., 364 (2012), 3329.   Google Scholar

[33]

B. R. Vainberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty $ of the solutions of nonstationary problems,, Uspehi Mat. Nauk, 30 (1975), 3.   Google Scholar

[34]

Y. Zhou and W. Han, Blow-up of solutions to semilinear wave equations with variable coefficients and boundary,, J. Math. Anal. Appl., 374 (2011), 585.   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[3]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[4]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[7]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[8]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[9]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[10]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[11]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[12]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]