\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance

Abstract Related Papers Cited by
  • In this paper, we consider the existence of nontrivial $1$-periodic solutions of the following Hamiltonian systems \begin{eqnarray} -J\dot{z}=H'(t,z), z\in R^{2N}, \end{eqnarray} where $J$ is the standard symplectic matrix of $2N\times 2N$, $H\in C^2 ( [0,1] \times R^{2N}, R)$ is $1$-periodic in its first variable and $H'(t,z)$ denotes the gradient of $H$ with respect to the variable $z$. Furthermore, $H'(t,z)$ is asymptotically linear both at origin and at infinity. Based on the precise computations of the critical groups, Maslov-type index theory and Galerkin approximation procedure, we obtain some existence results for nontrivial $1$-periodic solutions under new classes of conditions. It turns out that our main results improve sharply some known results in the literature.
    Mathematics Subject Classification: Primary: 34B15, 34C25, 37J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Sup. Pisa Cl. Sci. Ser. IV, 7 (1980), 539-603.

    [2]

    H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math., 32 (1980), 149-189.doi: 10.1007/BF01298187.

    [3]

    P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some problems with strong resonance at infinity, Nonlinear Anal. TMA, 7 (1983), 241-273.doi: 10.1016/0362-546X(83)90115-3.

    [4]

    T. Bartsch and S. J. Li, Critical point theory for asymptotically quadratic functionals with applications to problems at resonance, Nonlinear Anal. TMA, 28 (1997), 419-441.doi: 10.1016/0362-546X(95)00167-T.

    [5]

    G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336 (in Italian).

    [6]

    K. C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure. Appl. Math., 34 (1981), 693-712.doi: 10.1002/cpa.3160340503.

    [7]

    K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solutions Problems," Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0385-8.

    [8]

    K. C. Chang, J. Q. Liu and M. J. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 14 (1997), 103-117.doi: 10.1016/S0294-1449(97)80150-3.

    [9]

    C. C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., 37 (1984), 207-253.doi: 10.1002/cpa.3160370204.

    [10]

    G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. Math. Ser. B, 18 (1997), 359-372.doi: 10.1006/jdeq.1995.1124.

    [11]

    G. Fei, Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity, J. Differential Equations, 121 (1995), 121-133.doi: 10.1006/jdeq.1995.1124.

    [12]

    D. Gromoll and W. Meyer, On differentiable functions with isolated critical point, Topology, 8 (1969), 361-369.doi: 10.1016/0040-9383(69)90022-6.

    [13]

    Y. X. Guo, "Morse Theory for Strongly Indefinite Functional and Its Applications," Doctoral thesis, Institute of Mathematics, Peking University, Beijing, 1999.doi: 10.1142/9789812704283_0013.

    [14]

    Y. X. Guo, Nontrivial periodic solutions for asymptotically linear Hamiltonian systems with resonance, J. Differential Equations, 175 (2001), 71-87.doi: 10.1006/jdeq.2000.3966.

    [15]

    N. Hirano and T. Nishimura, Multiplicity results for semilinear elliptic problems at resonance and with jumping non-linearities, J. Math. Anal. Appl., 180 (1993), 566-586.doi: 10.1006/jmaa.1993.1417.

    [16]

    S. Li and J. Q. Liu, Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations, 78 (1989), 53-73.doi: 0022-0396(89)90075-2.

    [17]

    S. Li and J. Q. Liu, Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance, Houston J. Math., 25 (1999), 563-582.

    [18]

    S. Li and W. Zou, The computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue, J. Math. Anal. Appl., 235 (1999), 237-259.doi: 10.1006/jmaa.1999.6396.

    [19]

    Y. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, in "Stochastic Processes, Physics and Geometry" (S. Albeverio, et al. Eds.), Proceedings of Conference in Asconal/Locarno, Switzerland, World Scientific, Singapore, 1990, pp. 528-563.

    [20]

    Y. Long, Maslov-type index, degenerate critical points and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.

    [21]

    S. MaInfinitely many periodic solutions for asymptotically linear Hamiltonian systems, Rocky Mountain J. Math., to appear.

    [22]

    S. Ma, Computations of critical groups and periodic solutions for asymptotically linear Hamiltonian systems, J. Differential Equations, 248 (2010), 2435-2457.doi: 10.1016/j.jde.2009.11.013.

    [23]

    S. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal. TMA, 73 (2010), 3856-3872.doi: 10.1016/j.na.2010.08.013.

    [24]

    J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Appl. Math. Sci., 74, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2061-7.

    [25]

    P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," in CBMS Reg. Conf. Ser. in Math., Vol.65, American Mathematical Society, Providence, RI, 1986.

    [26]

    C.-L. Tang and X.-P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl., 259 (2001), 386-397.doi: 10.1006/jmaa.2000.7401.

    [27]

    C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275 (2002), 870-882.doi: 10.1016/S0022-247X(02)00442-0.

    [28]

    J. Su, Nontrivial periodic solutions for the asymptotically linear Hamiltonian systems with resonance at infinity, J. Differential Equations, 145 (1998), 252-273.doi: 10.1006/jdeq.1997.3360.

    [29]

    A. Szulkin, Cohomology and Morse theory for strongly indefinite functionals, Math. Z., 209 (1992), 375-418.doi: 10.1007/BF02570842.

    [30]

    A. Szulkin and W. Zou, Infinite dimensional cohomology groups and periodic solutions of asymptotically linear Hamiltonian systems, J. Differential Equations, 174 (2001), 369-391.doi: 10.1006/jdeq.2000.3942.

    [31]

    J. R. Ward, Applications of critical point theory to weakly nonlinear boundary value problems at resonance, Houston J. Math., 10 (1984), 291-305.

    [32]

    W. Zou, Solutions for resonant elliptic systems with nonodd or odd nonlinearities, J. Math. Anal. Appl., 223 (1998), 397-417.doi: 10.1006/jmaa.1998.5938.

    [33]

    W. Zou, S. Li and J. Q. Liu, Nontrivial solutions for resonant cooperative elliptic systems via computations of critical groups, Nonlinear Anal. TMA, 38 (1999), 229-247.doi: 10.1016/S0362-546X(98)00191-6.

    [34]

    W. Zou, Multiple solutions for second-order Hamiltonian systems via computation of the critical groups, Nonlinear Anal. TMA, 44 (2001), 975-989.doi: 10.1016/S0362-546X(99)00324-7.

    [35]

    W. Zou, Computations of the critical groups and the nontrivial solutions for resonant type asymptotically linear Hamiltonian systems, Nonlinear Anal. TMA, 49 (2002), 481-499.doi: 10.1016/S0362-546X(01)00115-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return