-
Previous Article
Behaviour of $p$--Laplacian problems with Neumann boundary conditions when $p$ goes to 1
- CPAA Home
- This Issue
-
Next Article
On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations
The point-wise estimates of solutions for semi-linear dissipative wave equation
1. | Department of Mathematics, North China Electric Power University, Beijing 102208 |
References:
[1] |
V. Belleri and V. Pata, Attractors for semi-linear strongly damped wave equations on $R^3$, Discrete Contin. Dyn. Syst., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719. |
[2] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Math., 19, Amer. Math. Soc., Providence, RI, 1998. |
[3] |
D. Hoff and K. Zumbrun, Point-wise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew Math. Phys., 48 (1997), 597-614.
doi: 10.1007/s000330050049. |
[4] |
T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.
doi: 10.1016/j.jde.2004.03.034. |
[5] |
R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differential Equations, 226 (2006), 1-29.
doi: 10.1016/j.jde.2006.01.002. |
[6] |
R. Ikehata and M. Ohta, Critical exponent for semi-linear dissipative wave equation in $\mathbbR^n$, J. Math. Anal. Appl., 269 (2002), 87-97.
doi: 10.1016/S0022-247X(02)00021-5. |
[7] |
N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semi-linear dissipative wave equation on $R^n$, Discrete Contin. Dyn. Syst., 8 (2002), 939-951.
doi: 10.3934/dcds.2002.8.939. |
[8] |
S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semi-linear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653.
doi: 10.2969/jmsj/04740617. |
[9] |
T.-T. Li and Y. Zhou, Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$, Discrete Contin. Dyn. Syst., 1 (1995), 503-520.
doi: 10.3934/dcds.1995.1.503. |
[10] |
J. Lin, K. Nishihara and J. Zhai, $L^2$-estimates of solutions for damped wave equations with space-time dependent damping term, J. Differential Equations, 248 (2010), 403-422.
doi: 10.1016/j.jde.2009.09.022. |
[11] |
Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions, Discrete Contin. Dyn. Syst., 20 (2008), 1013-1028.
doi: 10.3934/dcds.2008.20.1013. |
[12] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semi-linear dissipative wave equations, Math. Z., 214 (1993), 325-342.
doi: .10.1007/BF02572407. |
[13] |
K. Nishihara, Global asymptotics for the damped wave equation with absorption in higher dimensional space, J. Math. Soc. Japan, 58 (2006), 805-836.
doi: 10.2969/jmsj/1156342039. |
[14] |
K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent damped wave equations, J. Math. Anal. Appl., 360 (2009), 412-421.
doi: 10.1016/j.jmaa.2009.06.065. |
[15] |
K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, J. Math. Anal. Appl., 313 (2006), 598-610.
doi: 10.1016/j.jmaa.2005.08.059. |
[16] |
K. Ono, Asymptotic behavior of solutions for semi-linear telegraph equations, J. Math. Tokushima Univ., 31 (1997), 11-22. |
[17] |
K. Ono, Global existence and asymptotic behavior of small solutions for semi-linear dissipative wave equations, Discrete Contin. Dyn. Syst., 9 (2003), 651-662.
doi: 10.3934/dcds.2003.9.651. |
[18] |
G. Todorova and B. Yordnov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[19] |
W. Wang and T. Yang, The point-wise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.
doi: 10.1006/jdeq.2000.3937. |
show all references
References:
[1] |
V. Belleri and V. Pata, Attractors for semi-linear strongly damped wave equations on $R^3$, Discrete Contin. Dyn. Syst., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719. |
[2] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Math., 19, Amer. Math. Soc., Providence, RI, 1998. |
[3] |
D. Hoff and K. Zumbrun, Point-wise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. angew Math. Phys., 48 (1997), 597-614.
doi: 10.1007/s000330050049. |
[4] |
T. Hosono and T. Ogawa, Large time behavior and $L^p-L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.
doi: 10.1016/j.jde.2004.03.034. |
[5] |
R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differential Equations, 226 (2006), 1-29.
doi: 10.1016/j.jde.2006.01.002. |
[6] |
R. Ikehata and M. Ohta, Critical exponent for semi-linear dissipative wave equation in $\mathbbR^n$, J. Math. Anal. Appl., 269 (2002), 87-97.
doi: 10.1016/S0022-247X(02)00021-5. |
[7] |
N. I. Karachalios and N. M. Stavrakakis, Estimates on the dimension of a global attractor for a semi-linear dissipative wave equation on $R^n$, Discrete Contin. Dyn. Syst., 8 (2002), 939-951.
doi: 10.3934/dcds.2002.8.939. |
[8] |
S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semi-linear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653.
doi: 10.2969/jmsj/04740617. |
[9] |
T.-T. Li and Y. Zhou, Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$, Discrete Contin. Dyn. Syst., 1 (1995), 503-520.
doi: 10.3934/dcds.1995.1.503. |
[10] |
J. Lin, K. Nishihara and J. Zhai, $L^2$-estimates of solutions for damped wave equations with space-time dependent damping term, J. Differential Equations, 248 (2010), 403-422.
doi: 10.1016/j.jde.2009.09.022. |
[11] |
Y. Liu and W. Wang, The point-wise estimates of solutions for dissipative wave equation in multi-dimensions, Discrete Contin. Dyn. Syst., 20 (2008), 1013-1028.
doi: 10.3934/dcds.2008.20.1013. |
[12] |
M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semi-linear dissipative wave equations, Math. Z., 214 (1993), 325-342.
doi: .10.1007/BF02572407. |
[13] |
K. Nishihara, Global asymptotics for the damped wave equation with absorption in higher dimensional space, J. Math. Soc. Japan, 58 (2006), 805-836.
doi: 10.2969/jmsj/1156342039. |
[14] |
K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent damped wave equations, J. Math. Anal. Appl., 360 (2009), 412-421.
doi: 10.1016/j.jmaa.2009.06.065. |
[15] |
K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, J. Math. Anal. Appl., 313 (2006), 598-610.
doi: 10.1016/j.jmaa.2005.08.059. |
[16] |
K. Ono, Asymptotic behavior of solutions for semi-linear telegraph equations, J. Math. Tokushima Univ., 31 (1997), 11-22. |
[17] |
K. Ono, Global existence and asymptotic behavior of small solutions for semi-linear dissipative wave equations, Discrete Contin. Dyn. Syst., 9 (2003), 651-662.
doi: 10.3934/dcds.2003.9.651. |
[18] |
G. Todorova and B. Yordnov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[19] |
W. Wang and T. Yang, The point-wise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.
doi: 10.1006/jdeq.2000.3937. |
[1] |
Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307 |
[2] |
Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 |
[3] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[4] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[5] |
Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255 |
[6] |
Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827 |
[7] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[8] |
Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems and Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835 |
[9] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[10] |
Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 |
[11] |
Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353 |
[12] |
Yongqin Liu, Weike Wang. The pointwise estimates of solutions for dissipative wave equation in multi-dimensions. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1013-1028. doi: 10.3934/dcds.2008.20.1013 |
[13] |
Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217 |
[14] |
Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018 |
[15] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[16] |
Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222 |
[17] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[18] |
Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631 |
[19] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[20] |
Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]