• Previous Article
    Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition
  • CPAA Home
  • This Issue
  • Next Article
    Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance
November  2013, 12(6): 2381-2391. doi: 10.3934/cpaa.2013.12.2381

Multiple solutions for singular N-Laplace equations with a sign changing nonlinearity

1. 

Indian Institute of Technology Gandhinagar, Vishwakarma Government Engineering College Complex, Chandkheda, Visat-Gandhinagar Highway, Ahmedabad, Gujarat, 382424, India

Received  November 2011 Revised  September 2012 Published  May 2013

In this article, we prove the existence of multiple weak solutions to N-Laplace equation \begin{eqnarray} -\Delta_N u-\mu \frac{g(x)}{(|x| \log\frac{R}{|x|})^N }|u|^{N-2}u=\lambda f(x,u), \ in\ \Omega.\\ u =0, \ on\ \partial \Omega, \end{eqnarray} using Bonanno's three critical point theorem.
Citation: J. Tyagi. Multiple solutions for singular N-Laplace equations with a sign changing nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2381-2391. doi: 10.3934/cpaa.2013.12.2381
References:
[1]

Adimurthi, M. Ramaswamy and N. Chaudhuri, Improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: 10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

Adimurthi and K. Sandeep, Existence and non-existence of first eigenvalue of perturbed Hardy-Sobolev operator,, Proc. Royal. Soc. Edinburg, 132 (2002), 1021.  doi: 10.1017/S0308210500001992.  Google Scholar

[3]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian,, Ann. Sc. Norm. Super. Pisa, 17 (1990), 393.   Google Scholar

[4]

R. P. Agarwal, D. Cao. H. Lü and Donal O'Regan, Existence and multiplicity of positive solutions for singular semipositone p-Laplacian,, Canad. J. Math., 58 (2006), 449.  doi: 10.4153/CJM-2006-019-2.  Google Scholar

[5]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651.  doi: 10.1016/S0362-546X(03)00092-0.  Google Scholar

[6]

H. Brezis and E. Lieb, A relation between point convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[7]

J. M. do Ó, N-Laplacian equations in $\R^N$ with critical growth,, Abstr. Appl. Anal., 2 (1997), 301.  doi: 10.1155/S1085337597000419.  Google Scholar

[8]

J. M. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $R^n$,, J. Diff. Equ., 246 (2009), 1363.  doi: 10.1016/j.jde.2008.11.020.  Google Scholar

[9]

P. Drábek, A. Kufner and F. Nicolosi, "Quasilinear Elliptic Equations with Degenerations and Singularities,'', De Gruyter Series in Nonlinear Analysis and Applications, (1997).  doi: 10.1515/9783110804775.  Google Scholar

[10]

J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[11]

J. Giacomoni, S. Prashanth and K. Sreenadh, A global multiplicity result for N-Laplacian with critical nonlinearity of concave-convex type,, J. Diff. Equations, 232 (2007), 544.  doi: 10.1016/j.jde.2006.09.012.  Google Scholar

[12]

D. D. Hai, On a class of sublinear quasilinear elliptic problems,, Proc. Amer. Math. Soc., 131 (2003), 2409.  doi: 10.1090/S0002-9939-03-06874-6.  Google Scholar

[13]

D. Jiang, Donal O'Regan and R. P. Agarwal, Existence theory for single and multiple solutions to singular boundary value problems for the one-dimensional p-Laplacian,, Adv. Math. Sci. Appl., 13 (2003), 179.  doi: ~aiki/AMSA/vol13.html.  Google Scholar

[14]

A. Kristály and C. Varga, Multiple solutions for elliptic problems with singular and sublinear potentials,, Proc. Amer. Math. Soc., 135 (2007), 2121.  doi: 10.1090/S0002-9939-07-08715-1.  Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1,, Rev. Mat. Iberoamericana, 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[16]

E. Montefusco, Lower semicontinuity of functionals via the concentration-compactness principle,, J. Math. Anal. Appl., 263 (2001), 264.  doi: 10.1006/jmaa.2001.7631.  Google Scholar

[17]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Uni. Math. J., 20 (1970), 1077.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[18]

I. Peral and J. L. Vazquez, On the stability or instability of singular solutions with exponential reaction term,, Arch. Rational Mech. Anal., 129 (1995), 201.  doi: 10.1007/BF00383673.  Google Scholar

[19]

K. Perera, R. P. Agarwal and Donal O'Regan, Multiplicity results for p-sublinear p-Laplacian problems involving indefinite eigenvalue problems via Morse theory,, Electronic J. Diff. Equations, 41 (2010), 1.  doi: ISSN: 1072-6691.  Google Scholar

[20]

S. Prashanth and K. Sreenadh, Multiplicity of positive solutions for N-Laplace equation in a ball,, Diff. Int. Equations, 17 (2004), 709.   Google Scholar

[21]

J. Saint Raymond, On the multiplicity of solutions of the equations $-\Delta u = \lambda. f(u)$,, J. Diff. Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[22]

Y. T. Shen, Y. X. Yao and Z. H. Chen, On a nonlinear elliptic problem with critical potential in $\R^2$,, Science in China, 47 (2004), 741.  doi: 10.1360/03ys0194.  Google Scholar

[23]

M. Souza and J. M. do Ó, On a singular and nonhomogeneous N-Laplacian equation involving critical growth,, J. Math. Anal. Appl., 380 (2011), 241.  doi: 10.1016/j.jmaa.2011.03.028.  Google Scholar

[24]

J. Tyagi, Existence of nontrivial solutions for singular quasilinear equations with sign changing nonlinearity,, Electronic J. Diff. Equations, 117 (2010), 1.  doi: ISSN: 1072-6691.  Google Scholar

[25]

Z. Yang, D. Geng and H. Yan, Three solutions for singular p-Laplacian type equations,, Electronic J. Diff. Equations, 61 (2008), 1.  doi: ISSN: 1072-6691.  Google Scholar

[26]

G. Zhang, J. Shao and S. Liu, Linking solutions for N-Laplace elliptic equations with Hardy-Sobolev operator and indefinite weights,, Comm. Pure. Appl. Anal., 10 (2011), 571.   Google Scholar

show all references

References:
[1]

Adimurthi, M. Ramaswamy and N. Chaudhuri, Improved Hardy-Sobolev inequality and its applications,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: 10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

Adimurthi and K. Sandeep, Existence and non-existence of first eigenvalue of perturbed Hardy-Sobolev operator,, Proc. Royal. Soc. Edinburg, 132 (2002), 1021.  doi: 10.1017/S0308210500001992.  Google Scholar

[3]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian,, Ann. Sc. Norm. Super. Pisa, 17 (1990), 393.   Google Scholar

[4]

R. P. Agarwal, D. Cao. H. Lü and Donal O'Regan, Existence and multiplicity of positive solutions for singular semipositone p-Laplacian,, Canad. J. Math., 58 (2006), 449.  doi: 10.4153/CJM-2006-019-2.  Google Scholar

[5]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651.  doi: 10.1016/S0362-546X(03)00092-0.  Google Scholar

[6]

H. Brezis and E. Lieb, A relation between point convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[7]

J. M. do Ó, N-Laplacian equations in $\R^N$ with critical growth,, Abstr. Appl. Anal., 2 (1997), 301.  doi: 10.1155/S1085337597000419.  Google Scholar

[8]

J. M. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $R^n$,, J. Diff. Equ., 246 (2009), 1363.  doi: 10.1016/j.jde.2008.11.020.  Google Scholar

[9]

P. Drábek, A. Kufner and F. Nicolosi, "Quasilinear Elliptic Equations with Degenerations and Singularities,'', De Gruyter Series in Nonlinear Analysis and Applications, (1997).  doi: 10.1515/9783110804775.  Google Scholar

[10]

J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[11]

J. Giacomoni, S. Prashanth and K. Sreenadh, A global multiplicity result for N-Laplacian with critical nonlinearity of concave-convex type,, J. Diff. Equations, 232 (2007), 544.  doi: 10.1016/j.jde.2006.09.012.  Google Scholar

[12]

D. D. Hai, On a class of sublinear quasilinear elliptic problems,, Proc. Amer. Math. Soc., 131 (2003), 2409.  doi: 10.1090/S0002-9939-03-06874-6.  Google Scholar

[13]

D. Jiang, Donal O'Regan and R. P. Agarwal, Existence theory for single and multiple solutions to singular boundary value problems for the one-dimensional p-Laplacian,, Adv. Math. Sci. Appl., 13 (2003), 179.  doi: ~aiki/AMSA/vol13.html.  Google Scholar

[14]

A. Kristály and C. Varga, Multiple solutions for elliptic problems with singular and sublinear potentials,, Proc. Amer. Math. Soc., 135 (2007), 2121.  doi: 10.1090/S0002-9939-07-08715-1.  Google Scholar

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1,, Rev. Mat. Iberoamericana, 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[16]

E. Montefusco, Lower semicontinuity of functionals via the concentration-compactness principle,, J. Math. Anal. Appl., 263 (2001), 264.  doi: 10.1006/jmaa.2001.7631.  Google Scholar

[17]

J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Uni. Math. J., 20 (1970), 1077.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[18]

I. Peral and J. L. Vazquez, On the stability or instability of singular solutions with exponential reaction term,, Arch. Rational Mech. Anal., 129 (1995), 201.  doi: 10.1007/BF00383673.  Google Scholar

[19]

K. Perera, R. P. Agarwal and Donal O'Regan, Multiplicity results for p-sublinear p-Laplacian problems involving indefinite eigenvalue problems via Morse theory,, Electronic J. Diff. Equations, 41 (2010), 1.  doi: ISSN: 1072-6691.  Google Scholar

[20]

S. Prashanth and K. Sreenadh, Multiplicity of positive solutions for N-Laplace equation in a ball,, Diff. Int. Equations, 17 (2004), 709.   Google Scholar

[21]

J. Saint Raymond, On the multiplicity of solutions of the equations $-\Delta u = \lambda. f(u)$,, J. Diff. Equations, 180 (2002), 65.  doi: 10.1006/jdeq.2001.4057.  Google Scholar

[22]

Y. T. Shen, Y. X. Yao and Z. H. Chen, On a nonlinear elliptic problem with critical potential in $\R^2$,, Science in China, 47 (2004), 741.  doi: 10.1360/03ys0194.  Google Scholar

[23]

M. Souza and J. M. do Ó, On a singular and nonhomogeneous N-Laplacian equation involving critical growth,, J. Math. Anal. Appl., 380 (2011), 241.  doi: 10.1016/j.jmaa.2011.03.028.  Google Scholar

[24]

J. Tyagi, Existence of nontrivial solutions for singular quasilinear equations with sign changing nonlinearity,, Electronic J. Diff. Equations, 117 (2010), 1.  doi: ISSN: 1072-6691.  Google Scholar

[25]

Z. Yang, D. Geng and H. Yan, Three solutions for singular p-Laplacian type equations,, Electronic J. Diff. Equations, 61 (2008), 1.  doi: ISSN: 1072-6691.  Google Scholar

[26]

G. Zhang, J. Shao and S. Liu, Linking solutions for N-Laplace elliptic equations with Hardy-Sobolev operator and indefinite weights,, Comm. Pure. Appl. Anal., 10 (2011), 571.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[3]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[4]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[5]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[7]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[8]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[9]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[10]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[11]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[12]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[13]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[14]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[18]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]