November  2013, 12(6): 2393-2408. doi: 10.3934/cpaa.2013.12.2393

Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition

1. 

College of Mathematics and Computer Science, Key Laboratory of High Performance Computing, and Stochastic Information Processing(Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China

Received  April 2012 Revised  December 2012 Published  May 2012

In this paper, we consider the problem \begin{eqnarray} -\Delta u=|x|^\alpha u^{p-1}, x \in \Omega,\\ u>0, x \in \Omega,\\ \frac{\partial u}{\partial \nu }+\beta u=0, x\in \partial \Omega, \end{eqnarray} where $\Omega$ is the unit ball in $R^N$ centered at the origin with $N\geq 3$, $\alpha>0, \beta>\frac{N-2}{2}, p\geq 2$ and $\nu $ is the unit outward vector normal to $\partial \Omega$. We investigate the asymptotic behavior of the ground state solutions $u_p$ of (1) as $p\to \frac{2N}{N-2}$. We show that the ground state solutions $u_p$ has a unique maximum point $x_p\in \bar\Omega$. In addition, the ground state solutions is non-radial provided that $p\to \frac{2N}{N-2}$.
Citation: Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393
References:
[1]

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi,, Nonlinear Anal., (1991), 9.   Google Scholar

[2]

Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem,, J. Reine Angew. Math., 456 (1994), 1.  doi: 10.1515/crll.1994.456.1.  Google Scholar

[3]

Adimurthi and S. L. Yadava, Positive solution for Neumann problem with critical nonlinearity on boundary,, Comm. Partial Differential Equations, 16 (1991), 1733.  doi: 10.1080/03605309108820821.  Google Scholar

[4]

H. Brezis and E. Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73.  doi: 10.1016/0022-1236(85)90020-5.  Google Scholar

[5]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state I,, Ann. I. H. Poincare., 23 (2006), 803.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[6]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state II,, J. Differential Equation, 216 (2005), 78.  doi: 10.1016/j.jde.2005.02.018.  Google Scholar

[7]

D. Cao and S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[8]

Daomin Cao, E. S. Noussair and Shusen Yan, On a semilinear Robin prolem involving critical Sobolev exponent,, Advanced Nonlinear Studies, 1 (2001), 43.   Google Scholar

[9]

Yuxia Fu and Qiuyi Dai, Positive solutions of the Robin problem for semilinear elliptic equations on annuli,, Rend. Lincei Mat. Appl., 19 (2008), 175.  doi: 10.4171/RLM/516.  Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 8 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

Yonggen Gu and T. Liu, A priori estimate and existence of positive solutions of semilinear elliptic equations with the third boundary value problem,, J. Systems Sci. Complexity, 14 (2001), 389.   Google Scholar

[12]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, Astronom. Astrophys., 24 (1973), 229.  doi: 10.1007/978-94-010-9877-9_37.  Google Scholar

[13]

Haiyang He, The Robin problem for the Hénon equation,, Accepted by Bulletin of the Australian Mathematic Society., ().   Google Scholar

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case,, Rev. Mat. Iberoamericana., (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[15]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[16]

D. Smets, J. B. Su and M. Willem, Non-radial ground states for the Henon equation,, Comm. Contemp. Math., 4 (2002), 467.  doi: 10.1142/S0219199702000725.  Google Scholar

[17]

D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problem,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[18]

X. J. Wang, Neumann problem for semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equation, 93 (1991), 283.  doi: 10.1016/0022-0396(91)90014-Z.  Google Scholar

show all references

References:
[1]

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi,, Nonlinear Anal., (1991), 9.   Google Scholar

[2]

Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem,, J. Reine Angew. Math., 456 (1994), 1.  doi: 10.1515/crll.1994.456.1.  Google Scholar

[3]

Adimurthi and S. L. Yadava, Positive solution for Neumann problem with critical nonlinearity on boundary,, Comm. Partial Differential Equations, 16 (1991), 1733.  doi: 10.1080/03605309108820821.  Google Scholar

[4]

H. Brezis and E. Lieb, Sobolev inequalities with remainder terms,, J. Funct. Anal., 62 (1985), 73.  doi: 10.1016/0022-1236(85)90020-5.  Google Scholar

[5]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state I,, Ann. I. H. Poincare., 23 (2006), 803.  doi: 10.1016/j.anihpc.2006.04.001.  Google Scholar

[6]

J. Byeon and Z-Q. Wang, On the Hénon equation: Asymptotic profile of ground state II,, J. Differential Equation, 216 (2005), 78.  doi: 10.1016/j.jde.2005.02.018.  Google Scholar

[7]

D. Cao and S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation,, J. Math. Anal. Appl., 278 (2003), 1.  doi: 10.1016/S0022-247X(02)00292-5.  Google Scholar

[8]

Daomin Cao, E. S. Noussair and Shusen Yan, On a semilinear Robin prolem involving critical Sobolev exponent,, Advanced Nonlinear Studies, 1 (2001), 43.   Google Scholar

[9]

Yuxia Fu and Qiuyi Dai, Positive solutions of the Robin problem for semilinear elliptic equations on annuli,, Rend. Lincei Mat. Appl., 19 (2008), 175.  doi: 10.4171/RLM/516.  Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 8 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

Yonggen Gu and T. Liu, A priori estimate and existence of positive solutions of semilinear elliptic equations with the third boundary value problem,, J. Systems Sci. Complexity, 14 (2001), 389.   Google Scholar

[12]

M. Hénon, Numerical experiments on the stability of spherical stellar systems,, Astronom. Astrophys., 24 (1973), 229.  doi: 10.1007/978-94-010-9877-9_37.  Google Scholar

[13]

Haiyang He, The Robin problem for the Hénon equation,, Accepted by Bulletin of the Australian Mathematic Society., ().   Google Scholar

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case,, Rev. Mat. Iberoamericana., (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[15]

W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819.  doi: 10.1002/cpa.3160440705.  Google Scholar

[16]

D. Smets, J. B. Su and M. Willem, Non-radial ground states for the Henon equation,, Comm. Contemp. Math., 4 (2002), 467.  doi: 10.1142/S0219199702000725.  Google Scholar

[17]

D. Smets and M. Willem, Partial symmetry and asymptotic behavior for some elliptic variational problem,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[18]

X. J. Wang, Neumann problem for semilinear elliptic equations involving critical Sobolev exponents,, J. Differential Equation, 93 (1991), 283.  doi: 10.1016/0022-0396(91)90014-Z.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[5]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[9]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[18]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[19]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]