Citation: |
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7. |
[2] |
B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.doi: 10.1016/j.jde.2012.02.023. |
[3] |
H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.doi: 10.1090/S0002-9939-1983-0699419-3. |
[4] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405. |
[5] |
A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 463-470. |
[6] |
M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three, Nonlinear Anal., 17 (1991), 445-455.doi: 10.1016/0362-546X(91)90139-R. |
[7] |
A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.doi: 10.1016/j.jmaa.2004.03.034. |
[8] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004. |
[9] |
O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 125-142. |
[10] |
A. Fiscella, Saddle point solutions for non-local elliptic operators, preprint. |
[11] |
F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differential Equations, 2 (1997), 555-572. |
[12] |
P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215-223. |
[13] |
P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, American Mathematical Society, Providence, RI, 1986. |
[14] |
R. Servadei, The Yamabe equation in a non-local setting, preprint, available at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=12-40. |
[15] |
R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, to appear in Rev. Mat. Iberoam., 29 (2013). |
[16] |
R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032. |
[17] |
R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.doi: 10.3934/dcds.2013.33.2105. |
[18] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, to appear in Trans. Amer. Math. Soc. |
[19] |
R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, preprint, available at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=12-58. |
[20] |
M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems," Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer Verlag, Berlin-Heidelberg, 1990. |
[21] |
J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41. |
[22] |
M. Willem, "Minimax Theorems," Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, 1996. |