-
Previous Article
Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations
- CPAA Home
- This Issue
-
Next Article
Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations
Super polyharmonic property of solutions for PDE systems and its applications
1. | College of Mathematics and Information Science, Henan Normal University |
2. | Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China |
As an interesting application, we establish the equivalence between the integral system \begin{eqnarray} u_i(x) = \int_{R^n} \frac{1}{|x-y|^{n-\alpha}} f_i(u_1(y), \cdots, u_m(y)) d y, \ x \in R^n \ \ \ \ \ (2) \end{eqnarray} and PDE system (1) when $\alpha = 2k < n.$
In the last few years, a series of results on qualitative properties for solutions of integral systems (2) have been obtained, since the introduction of a powerful tool--the method of moving planes in integral forms. Now due to the equivalence established here, all these properties can be applied to the corresponding PDE systems.
We say that systems (1) and (2) are equivalent, if whenever $u$ is a positive solution of (2), then $u$ is also a solution of \begin{eqnarray} (- \Delta)^k u_i = c f_i(u_1, \cdots, u_m), \ x \in R^n, \ i= 1,2, \cdots, m \end{eqnarray} with some constant $c$; and vice versa.
References:
[1] |
D. Applebaum, "Lévy Processes and Stochastic Calculus,", Second edition, 116 (2009). Google Scholar |
[2] |
J. Bertoin, "Lévy Processes,", Cambridge Tracts in Mathematics, 121 (1996). Google Scholar |
[3] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, Statistical mechanics, 195 (1990). Google Scholar |
[4] |
L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. Math., 171 (2010), 1903.
doi: 10.2307/2152750. |
[5] |
W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., (2005), 164.
|
[6] |
W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure Appl. Anal., 4 (2005), 1.
|
[7] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.
|
[8] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.
doi: 10.1016/S0252-9602(09)60079-5. |
[9] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
|
[10] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[11] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.
doi: 10.3934/dcds.2011.30.1083. |
[12] |
W. Chen and C. Li, Methods on nonlinear elliptic equations,, AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).
|
[13] |
W. Chen and C. Li, A sup + inf inequality near R = 0,, Advances in Math, 220 (2009), 219.
doi: 10.1016/j.aim.2008.09.005. |
[14] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.
|
[15] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.
|
[16] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs., 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[17] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, In, 1871 (2006). Google Scholar |
[18] |
R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC Financial Mathematics Series, (2004). Google Scholar |
[19] |
W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Drichlet problems,, J. Math. Anal. Appl., 377 (2011), 744.
doi: 10.1016/j.jmaa.2010.11.035. |
[20] |
Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835.
doi: 10.1016/j.aim.2012.01.018. |
[21] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.
|
[22] |
X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potentials,, Comm. Pure. Appl. Anal., 10 (2011), 1111.
doi: 10.3934/cpaa.2011.10.1111. |
[23] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.
doi: 10.1016/j.anihpc.2007.03.006. |
[24] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.
|
[25] |
C. Jin and C. Li, Quantitative analysis of some system of integral equations,, Cal. Var. & PDEs, 26 (2006), 447.
doi: 10.1007/s00526-006-0013-5. |
[26] |
J. Liu, Y. Guo and Y. Zhang, Liouville-type Theorem for polyharmoic systems in $R^n$,, J. Diff. Equa., 225 (2006), 685.
doi: 10.1016/j.jde.2005.10.016. |
[27] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. Math., 118 (1983), 349.
doi: 10.2307/2007032. |
[28] |
E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,, Stud. Appl. Math, 57 (1977), 93. Google Scholar |
[29] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonl. Anal: Theory, 71 (2009), 1796.
|
[30] |
C. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$,, Comment. Math. Helv., 73 (1998), 206.
doi: 10.1007/s000140050052. |
[31] |
Y. Li, Remarks on some conformally invariant integral equations: the method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.
doi: 10.4171/JEMS/6. |
[32] |
C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.
doi: 10.3934/cpaa.2007.6.453. |
[33] |
Y. Lei, C. Li and Chao Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system,, Cal. Var. & PDE, 45 (2012), 43.
doi: 10.1007/s00526-011-0450-7. |
[34] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[35] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.
doi: 10.3934/cpaa.2009.8.1925. |
[36] |
D. Li, G. Strohmer and L. Wang, Symmetry of integral equations on bounded domains,, Proc. AMS, 137 (2009), 3695.
doi: 10.1090/S0002-9939-09-09987-0. |
[37] |
D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.
|
[38] |
A. Majda, D. McLaughlin and E. Tabak, A one-dimensional model for dispersive wave turbulence,, J. Nonl. Sci., 7 (1997), 9.
doi: 10.1007/BF02679124. |
[39] |
L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.
doi: 10.3934/cpaa.2006.5.855. |
[40] |
L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.
doi: 10.1016/j.jmaa.2007.12.064. |
[41] |
L. Ma and D. Chen, Radial symmetry and uniqueness of non-negative solutions to an integral system,, Math. and Computer Modelling, 49 (2009), 379.
doi: 10.1016/j.mcm.2008.06.010. |
[42] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adances in Math., 3 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[43] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.
doi: 10.1007/s00205-008-0208-3. |
[44] |
J. Qing and D. Raske, On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds,, International Mathematics Research Notices, (2006), 1. Google Scholar |
[45] |
V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction,, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885.
doi: 10.1016/j.cnsns.2006.03.005. |
[46] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.
doi: 10.1007/s002080050258. |
[47] |
X. Yan, Liouville-type theorem for a higher order elliptic system,, JMAA, 387 (2012), 153. Google Scholar |
show all references
References:
[1] |
D. Applebaum, "Lévy Processes and Stochastic Calculus,", Second edition, 116 (2009). Google Scholar |
[2] |
J. Bertoin, "Lévy Processes,", Cambridge Tracts in Mathematics, 121 (1996). Google Scholar |
[3] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media,, Statistical mechanics, 195 (1990). Google Scholar |
[4] |
L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. Math., 171 (2010), 1903.
doi: 10.2307/2152750. |
[5] |
W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations,, Disc. Cont. Dyn. Sys., (2005), 164.
|
[6] |
W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure Appl. Anal., 4 (2005), 1.
|
[7] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955.
|
[8] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 4 (2009), 949.
doi: 10.1016/S0252-9602(09)60079-5. |
[9] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 4 (2009), 1167.
|
[10] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[11] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083.
doi: 10.3934/dcds.2011.30.1083. |
[12] |
W. Chen and C. Li, Methods on nonlinear elliptic equations,, AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010).
|
[13] |
W. Chen and C. Li, A sup + inf inequality near R = 0,, Advances in Math, 220 (2009), 219.
doi: 10.1016/j.aim.2008.09.005. |
[14] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., LLVIII (2005), 1.
|
[15] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. Cont. Dyn. Sys., 12 (2005), 347.
|
[16] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. PDEs., 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[17] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence,, In, 1871 (2006). Google Scholar |
[18] |
R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC Financial Mathematics Series, (2004). Google Scholar |
[19] |
W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Drichlet problems,, J. Math. Anal. Appl., 377 (2011), 744.
doi: 10.1016/j.jmaa.2010.11.035. |
[20] |
Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835.
doi: 10.1016/j.aim.2012.01.018. |
[21] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.
|
[22] |
X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potentials,, Comm. Pure. Appl. Anal., 10 (2011), 1111.
doi: 10.3934/cpaa.2011.10.1111. |
[23] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. H. Poincare Nonl. Anal., 26 (2009), 1.
doi: 10.1016/j.anihpc.2007.03.006. |
[24] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. AMS, 134 (2006), 1661.
|
[25] |
C. Jin and C. Li, Quantitative analysis of some system of integral equations,, Cal. Var. & PDEs, 26 (2006), 447.
doi: 10.1007/s00526-006-0013-5. |
[26] |
J. Liu, Y. Guo and Y. Zhang, Liouville-type Theorem for polyharmoic systems in $R^n$,, J. Diff. Equa., 225 (2006), 685.
doi: 10.1016/j.jde.2005.10.016. |
[27] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. Math., 118 (1983), 349.
doi: 10.2307/2007032. |
[28] |
E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,, Stud. Appl. Math, 57 (1977), 93. Google Scholar |
[29] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations,, Nonl. Anal: Theory, 71 (2009), 1796.
|
[30] |
C. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$,, Comment. Math. Helv., 73 (1998), 206.
doi: 10.1007/s000140050052. |
[31] |
Y. Li, Remarks on some conformally invariant integral equations: the method of moving spheres,, J. Euro. Math. Soc., 6 (2004), 153.
doi: 10.4171/JEMS/6. |
[32] |
C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453.
doi: 10.3934/cpaa.2007.6.453. |
[33] |
Y. Lei, C. Li and Chao Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system,, Cal. Var. & PDE, 45 (2012), 43.
doi: 10.1007/s00526-011-0450-7. |
[34] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049.
doi: 10.1137/080712301. |
[35] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations,, Comm. Pure Appl. Anal., 6 (2009), 1925.
doi: 10.3934/cpaa.2009.8.1925. |
[36] |
D. Li, G. Strohmer and L. Wang, Symmetry of integral equations on bounded domains,, Proc. AMS, 137 (2009), 3695.
doi: 10.1090/S0002-9939-09-09987-0. |
[37] |
D. Li and R. Zhuo, An integral equation on half space,, Proc. AMS, 138 (2010), 2779.
|
[38] |
A. Majda, D. McLaughlin and E. Tabak, A one-dimensional model for dispersive wave turbulence,, J. Nonl. Sci., 7 (1997), 9.
doi: 10.1007/BF02679124. |
[39] |
L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure Appl. Anal., 5 (2006), 855.
doi: 10.3934/cpaa.2006.5.855. |
[40] |
L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 2 (2008), 943.
doi: 10.1016/j.jmaa.2007.12.064. |
[41] |
L. Ma and D. Chen, Radial symmetry and uniqueness of non-negative solutions to an integral system,, Math. and Computer Modelling, 49 (2009), 379.
doi: 10.1016/j.mcm.2008.06.010. |
[42] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adances in Math., 3 (2011), 2676.
doi: 10.1016/j.aim.2010.07.020. |
[43] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rat. Mech. Anal., 2 (2010), 455.
doi: 10.1007/s00205-008-0208-3. |
[44] |
J. Qing and D. Raske, On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds,, International Mathematics Research Notices, (2006), 1. Google Scholar |
[45] |
V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction,, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885.
doi: 10.1016/j.cnsns.2006.03.005. |
[46] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.
doi: 10.1007/s002080050258. |
[47] |
X. Yan, Liouville-type theorem for a higher order elliptic system,, JMAA, 387 (2012), 153. Google Scholar |
[1] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[2] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[3] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[4] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[5] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[6] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[7] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[8] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[9] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[10] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[11] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[14] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[15] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[16] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[17] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[18] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[19] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[20] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]