November  2013, 12(6): 2515-2542. doi: 10.3934/cpaa.2013.12.2515

Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2. 

Department of Mathematics, East China Normal University, Shanghai 200241, China

Received  June 2012 Revised  December 2012 Published  May 2013

We establish the local uniqueness of steady transonic shock solutions with spherical symmetry for the three-dimensional full Euler equations. These transonic shock-fronts are important for understanding transonic shock phenomena in divergent nozzles. From mathematical point of view, we show the uniqueness of solutions of a free boundary problem for a multidimensional quasilinear system of mixed-composite elliptic--hyperbolic type. To this end, we develop a decomposition of the Euler system which works in a general Riemannian manifold, a method to study a Venttsel problem of nonclassical nonlocal elliptic operators, and an iteration mapping which possesses locally a unique fixed point. The approach reveals an intrinsic structure of the steady Euler system and subtle interactions of its elliptic and hyperbolic part.
Citation: Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515
References:
[1]

P. Amorim, M. Ben-Artzi and P. G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method, Methods Appl. Anal., 12 (2005), 291-324.

[2]

P. Amorim, P. G. LeFloch and W. Neves, A geometric approach to error estimates for conservation laws posed on a spacetime, Nonlinear Anal., 74 (2011), 4898-4917.

[3]

D. Bleecker and G. Csordas, "Basic Partial Differential Equations," International Press: Boston, 1996.

[4]

G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang, On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.

[6]

G.-Q. Chen and M. Feldman, Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 310-356.

[7]

G.-Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections, Arch. Rational Mech. Anal., 184 (2007), 185-242.

[8]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles, J. Math. Pures Appl., 88 (2007), 191-218.

[9]

S. Chen and H. Yuan, Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems, Arch. Rational Mech. Anal., 187 (2008), 523-556.

[10]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves," Interscience Publishers Inc., New York, 1948.

[11]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," Springer-Verlag, New York, 2000.

[12]

T. Frankel, "The Geometry of Physicist, An Introduction," 2nd Ed., Cambridge University Press, Cambridge, 2004.

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd Edition, Springer-Verlag, Berlin-New York, 1983.

[14]

T.-T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems," John Wiley & Sons, Masson, Paris, 1994.

[15]

L. Liu and H. Yuan, Stability of cylindrical transonic shocks for two-dimensional steady compressible Euler system, J. Hyper. Diff. Equ., 5 (2008), 347-379.

[16]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with venttsel boundary conditions, Proc. Royal Soc. Edinburgh, 118A (1991), 193-207.

[17]

L. M. Sibner and R. J. Sibner, Transonic flows on axially symmetric torus, J. Math. Anal. Appl., 72 (1979), 362-382.

[18]

M. Taylor, "Partial Differential Equations," Vol. 3, Springer-Verlag, New York, 1996.

[19]

B. Whitham, "Linear and Nonlinear Waves," John Wiley, New York, 1974.

[20]

H. Yuan, Examples of steady subsonic flows in a convergent-divergent approximate nozzle, J. Diff. Eqs., 244 (2008), 1675-1691.

[21]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.

[22]

H. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows, Nonlinear Analysis: Real World Appl., 9 (2008), 316-325.

show all references

References:
[1]

P. Amorim, M. Ben-Artzi and P. G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method, Methods Appl. Anal., 12 (2005), 291-324.

[2]

P. Amorim, P. G. LeFloch and W. Neves, A geometric approach to error estimates for conservation laws posed on a spacetime, Nonlinear Anal., 74 (2011), 4898-4917.

[3]

D. Bleecker and G. Csordas, "Basic Partial Differential Equations," International Press: Boston, 1996.

[4]

G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang, On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.

[6]

G.-Q. Chen and M. Feldman, Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 310-356.

[7]

G.-Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections, Arch. Rational Mech. Anal., 184 (2007), 185-242.

[8]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles, J. Math. Pures Appl., 88 (2007), 191-218.

[9]

S. Chen and H. Yuan, Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems, Arch. Rational Mech. Anal., 187 (2008), 523-556.

[10]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves," Interscience Publishers Inc., New York, 1948.

[11]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," Springer-Verlag, New York, 2000.

[12]

T. Frankel, "The Geometry of Physicist, An Introduction," 2nd Ed., Cambridge University Press, Cambridge, 2004.

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd Edition, Springer-Verlag, Berlin-New York, 1983.

[14]

T.-T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems," John Wiley & Sons, Masson, Paris, 1994.

[15]

L. Liu and H. Yuan, Stability of cylindrical transonic shocks for two-dimensional steady compressible Euler system, J. Hyper. Diff. Equ., 5 (2008), 347-379.

[16]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with venttsel boundary conditions, Proc. Royal Soc. Edinburgh, 118A (1991), 193-207.

[17]

L. M. Sibner and R. J. Sibner, Transonic flows on axially symmetric torus, J. Math. Anal. Appl., 72 (1979), 362-382.

[18]

M. Taylor, "Partial Differential Equations," Vol. 3, Springer-Verlag, New York, 1996.

[19]

B. Whitham, "Linear and Nonlinear Waves," John Wiley, New York, 1974.

[20]

H. Yuan, Examples of steady subsonic flows in a convergent-divergent approximate nozzle, J. Diff. Eqs., 244 (2008), 1675-1691.

[21]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 1343-1370.

[22]

H. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows, Nonlinear Analysis: Real World Appl., 9 (2008), 316-325.

[1]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[2]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[3]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[4]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[5]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[6]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[7]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[8]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

[9]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[10]

Pengmei Zhang, Jiashan Zheng. Boundedness and stabilization of a three-dimensional parabolic-elliptic Keller-Segel-Stokes system. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4095-4125. doi: 10.3934/dcds.2022047

[11]

Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184

[12]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure and Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[13]

Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048

[14]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[15]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems and Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[16]

O. V. Kapustyan, V. S. Melnik, José Valero. A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 449-481. doi: 10.3934/dcds.2007.18.449

[17]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[18]

Kim Knudsen, Aksel Kaastrup Rasmussen. Direct regularized reconstruction for the three-dimensional Calderón problem. Inverse Problems and Imaging, 2022, 16 (4) : 871-894. doi: 10.3934/ipi.2022002

[19]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]