November  2013, 12(6): 2515-2542. doi: 10.3934/cpaa.2013.12.2515

Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2. 

Department of Mathematics, East China Normal University, Shanghai 200241, China

Received  June 2012 Revised  December 2012 Published  May 2013

We establish the local uniqueness of steady transonic shock solutions with spherical symmetry for the three-dimensional full Euler equations. These transonic shock-fronts are important for understanding transonic shock phenomena in divergent nozzles. From mathematical point of view, we show the uniqueness of solutions of a free boundary problem for a multidimensional quasilinear system of mixed-composite elliptic--hyperbolic type. To this end, we develop a decomposition of the Euler system which works in a general Riemannian manifold, a method to study a Venttsel problem of nonclassical nonlocal elliptic operators, and an iteration mapping which possesses locally a unique fixed point. The approach reveals an intrinsic structure of the steady Euler system and subtle interactions of its elliptic and hyperbolic part.
Citation: Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515
References:
[1]

P. Amorim, M. Ben-Artzi and P. G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method,, Methods Appl. Anal., 12 (2005), 291.   Google Scholar

[2]

P. Amorim, P. G. LeFloch and W. Neves, A geometric approach to error estimates for conservation laws posed on a spacetime,, Nonlinear Anal., 74 (2011), 4898.   Google Scholar

[3]

D. Bleecker and G. Csordas, "Basic Partial Differential Equations,", International Press: Boston, (1996).   Google Scholar

[4]

G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang, On two-dimensional sonic-subsonic flow,, Comm. Math. Phys., 271 (2007), 635.   Google Scholar

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461.   Google Scholar

[6]

G.-Q. Chen and M. Feldman, Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations,, Comm. Pure Appl. Math., 57 (2004), 310.   Google Scholar

[7]

G.-Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections,, Arch. Rational Mech. Anal., 184 (2007), 185.   Google Scholar

[8]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles,, J. Math. Pures Appl., 88 (2007), 191.   Google Scholar

[9]

S. Chen and H. Yuan, Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems,, Arch. Rational Mech. Anal., 187 (2008), 523.   Google Scholar

[10]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Interscience Publishers Inc., (1948).   Google Scholar

[11]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Springer-Verlag, (2000).   Google Scholar

[12]

T. Frankel, "The Geometry of Physicist, An Introduction,", 2nd Ed., (2004).   Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd Edition, (1983).   Google Scholar

[14]

T.-T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems,", John Wiley & Sons, (1994).   Google Scholar

[15]

L. Liu and H. Yuan, Stability of cylindrical transonic shocks for two-dimensional steady compressible Euler system,, J. Hyper. Diff. Equ., 5 (2008), 347.   Google Scholar

[16]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with venttsel boundary conditions,, Proc. Royal Soc. Edinburgh, 118A (1991), 193.   Google Scholar

[17]

L. M. Sibner and R. J. Sibner, Transonic flows on axially symmetric torus,, J. Math. Anal. Appl., 72 (1979), 362.   Google Scholar

[18]

M. Taylor, "Partial Differential Equations,", Vol. 3, (1996).   Google Scholar

[19]

B. Whitham, "Linear and Nonlinear Waves,", John Wiley, (1974).   Google Scholar

[20]

H. Yuan, Examples of steady subsonic flows in a convergent-divergent approximate nozzle,, J. Diff. Eqs., 244 (2008), 1675.   Google Scholar

[21]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system,, SIAM J. Math. Anal., 38 (2006), 1343.   Google Scholar

[22]

H. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows,, Nonlinear Analysis: Real World Appl., 9 (2008), 316.   Google Scholar

show all references

References:
[1]

P. Amorim, M. Ben-Artzi and P. G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method,, Methods Appl. Anal., 12 (2005), 291.   Google Scholar

[2]

P. Amorim, P. G. LeFloch and W. Neves, A geometric approach to error estimates for conservation laws posed on a spacetime,, Nonlinear Anal., 74 (2011), 4898.   Google Scholar

[3]

D. Bleecker and G. Csordas, "Basic Partial Differential Equations,", International Press: Boston, (1996).   Google Scholar

[4]

G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang, On two-dimensional sonic-subsonic flow,, Comm. Math. Phys., 271 (2007), 635.   Google Scholar

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461.   Google Scholar

[6]

G.-Q. Chen and M. Feldman, Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations,, Comm. Pure Appl. Math., 57 (2004), 310.   Google Scholar

[7]

G.-Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections,, Arch. Rational Mech. Anal., 184 (2007), 185.   Google Scholar

[8]

G.-Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles,, J. Math. Pures Appl., 88 (2007), 191.   Google Scholar

[9]

S. Chen and H. Yuan, Transonic shocks in compressible flow passing a duct for three-dimensional Euler systems,, Arch. Rational Mech. Anal., 187 (2008), 523.   Google Scholar

[10]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Interscience Publishers Inc., (1948).   Google Scholar

[11]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", Springer-Verlag, (2000).   Google Scholar

[12]

T. Frankel, "The Geometry of Physicist, An Introduction,", 2nd Ed., (2004).   Google Scholar

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", 2nd Edition, (1983).   Google Scholar

[14]

T.-T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems,", John Wiley & Sons, (1994).   Google Scholar

[15]

L. Liu and H. Yuan, Stability of cylindrical transonic shocks for two-dimensional steady compressible Euler system,, J. Hyper. Diff. Equ., 5 (2008), 347.   Google Scholar

[16]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with venttsel boundary conditions,, Proc. Royal Soc. Edinburgh, 118A (1991), 193.   Google Scholar

[17]

L. M. Sibner and R. J. Sibner, Transonic flows on axially symmetric torus,, J. Math. Anal. Appl., 72 (1979), 362.   Google Scholar

[18]

M. Taylor, "Partial Differential Equations,", Vol. 3, (1996).   Google Scholar

[19]

B. Whitham, "Linear and Nonlinear Waves,", John Wiley, (1974).   Google Scholar

[20]

H. Yuan, Examples of steady subsonic flows in a convergent-divergent approximate nozzle,, J. Diff. Eqs., 244 (2008), 1675.   Google Scholar

[21]

H. Yuan, On transonic shocks in two-dimensional variable-area ducts for steady Euler system,, SIAM J. Math. Anal., 38 (2006), 1343.   Google Scholar

[22]

H. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows,, Nonlinear Analysis: Real World Appl., 9 (2008), 316.   Google Scholar

[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[4]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[11]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[12]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[13]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[16]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[17]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]