-
Previous Article
Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation
- CPAA Home
- This Issue
-
Next Article
Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations
Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations
1. | Pohang Mathematics Institute, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea |
2. | School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China |
References:
[1] |
A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3-19. |
[2] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.
doi: 10.1016/j.matpur.2006.11.001. |
[3] |
T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics," Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., New York, 1989. |
[4] |
G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Differential Equations, 25 (2000), 2233-2257. |
[5] |
G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys., 180 (1996), 153-193.
doi: 10.1007/BF02101185. |
[6] |
Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.
doi: 10.1016/j.jde.2006.05.001. |
[7] |
R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations, J. Math. Anal. Appl., 311 (2005), 744-754.
doi: 10.1016/j.jmaa.2005.02.065. |
[8] |
D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Comm. Pure Appl. Anal., 3 (2004), 675-694.
doi: 10.3934/cpaa.2004.3.675. |
[9] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004. |
[10] |
H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives, Ric. Mat., 42 (1993), 199-248. |
[11] |
D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Differential Equations, 95 (1992), 33-74.
doi: 10.1016/0022-0396(92)90042-L. |
[12] |
D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Ration. Mech. Anal., 114 (1991), 15-46.
doi: 10.1007/BF00375683. |
[13] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.
doi: 10.1137/0151043. |
[14] |
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.
doi: 10.1007/s002200000322. |
[15] |
X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().
|
[16] |
X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[18] |
S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas, Quart. Appl. Math., 61 (2003), 435-449. |
[19] |
Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity, Siberian Math. J., 20 (1979), 208-218. |
[20] |
A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas, Siberian Math. J., 23 (1982), 44-49.
doi: 10.1007/BF00971419. |
[21] |
A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.
doi: 10.1016/0021-8928(77)90011-9. |
[22] |
H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[23] |
P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models," The Clarendon Press, Oxford University Press, New York, 1998. |
[24] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.
doi: 10.1137/S0036141097331044. |
[25] |
Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum, Comm. Math. Sci., 10 (2012), 527-554. |
[26] |
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, Math. Kyoto Univ., 20 (1980), 67-104. |
[27] |
J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France., 90 (1962), 487-497. |
[28] |
J. Serrin, On the uniqueness of compressible fluid motions, Arch. Ration. Mech. Anal., 3 (1959), 271-288.
doi: 10.1007/BF00284180. |
[29] |
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. |
[30] |
Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403-442.
doi: 10.1142/S0219891606000847. |
show all references
References:
[1] |
A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3-19. |
[2] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.
doi: 10.1016/j.matpur.2006.11.001. |
[3] |
T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics," Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., New York, 1989. |
[4] |
G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Differential Equations, 25 (2000), 2233-2257. |
[5] |
G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys., 180 (1996), 153-193.
doi: 10.1007/BF02101185. |
[6] |
Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.
doi: 10.1016/j.jde.2006.05.001. |
[7] |
R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations, J. Math. Anal. Appl., 311 (2005), 744-754.
doi: 10.1016/j.jmaa.2005.02.065. |
[8] |
D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Comm. Pure Appl. Anal., 3 (2004), 675-694.
doi: 10.3934/cpaa.2004.3.675. |
[9] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004. |
[10] |
H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives, Ric. Mat., 42 (1993), 199-248. |
[11] |
D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Differential Equations, 95 (1992), 33-74.
doi: 10.1016/0022-0396(92)90042-L. |
[12] |
D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Ration. Mech. Anal., 114 (1991), 15-46.
doi: 10.1007/BF00375683. |
[13] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.
doi: 10.1137/0151043. |
[14] |
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.
doi: 10.1007/s002200000322. |
[15] |
X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().
|
[16] |
X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[17] |
S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.
doi: 10.1007/PL00005543. |
[18] |
S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas, Quart. Appl. Math., 61 (2003), 435-449. |
[19] |
Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity, Siberian Math. J., 20 (1979), 208-218. |
[20] |
A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas, Siberian Math. J., 23 (1982), 44-49.
doi: 10.1007/BF00971419. |
[21] |
A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.
doi: 10.1016/0021-8928(77)90011-9. |
[22] |
H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.
doi: 10.1007/s00220-008-0495-4. |
[23] |
P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models," The Clarendon Press, Oxford University Press, New York, 1998. |
[24] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.
doi: 10.1137/S0036141097331044. |
[25] |
Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum, Comm. Math. Sci., 10 (2012), 527-554. |
[26] |
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, Math. Kyoto Univ., 20 (1980), 67-104. |
[27] |
J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France., 90 (1962), 487-497. |
[28] |
J. Serrin, On the uniqueness of compressible fluid motions, Arch. Ration. Mech. Anal., 3 (1959), 271-288.
doi: 10.1007/BF00284180. |
[29] |
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. |
[30] |
Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403-442.
doi: 10.1142/S0219891606000847. |
[1] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263 |
[4] |
Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072 |
[5] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[6] |
Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure and Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987 |
[7] |
Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163 |
[8] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
[9] |
Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567 |
[10] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
[11] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[12] |
Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure and Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459 |
[13] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[14] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[15] |
Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 |
[16] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[17] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[18] |
Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279 |
[19] |
Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137 |
[20] |
Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]