• Previous Article
    Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation
  • CPAA Home
  • This Issue
  • Next Article
    Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations
November  2013, 12(6): 2543-2564. doi: 10.3934/cpaa.2013.12.2543

Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations

1. 

Pohang Mathematics Institute, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

Received  June 2012 Revised  March 2013 Published  May 2013

In this paper, we consider the properties of the vacuum states for weak solutions to one-dimensional full compressible Navier-Stokes system with viscosity and heat conductivities for general equation of states. Under weak conditions on initial data, we prove that if there is no vacuum initially then the vacuum states do not occur in a finite time. In particular, the temperature variation has no immediate effects on the formation of the vacuum. There are no assumptions on density in large sets. Furthermore, we prove that two initially non interacting vacuum regions will never touch in the future.
Citation: Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543
References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3.   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989).   Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.   Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153.  doi: 10.1007/BF02101185.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744.  doi: 10.1016/j.jmaa.2005.02.065.  Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199.   Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33.  doi: 10.1016/0022-0396(92)90042-L.  Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15.  doi: 10.1007/BF00375683.  Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.  doi: 10.1007/s002200000322.  Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().   Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208.   Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44.  doi: 10.1007/BF00971419.  Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527.   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487.   Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271.  doi: 10.1007/BF00284180.  Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403.  doi: 10.1142/S0219891606000847.  Google Scholar

show all references

References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3.   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989).   Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.   Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153.  doi: 10.1007/BF02101185.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744.  doi: 10.1016/j.jmaa.2005.02.065.  Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199.   Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33.  doi: 10.1016/0022-0396(92)90042-L.  Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15.  doi: 10.1007/BF00375683.  Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.  doi: 10.1007/s002200000322.  Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().   Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208.   Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44.  doi: 10.1007/BF00971419.  Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527.   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487.   Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271.  doi: 10.1007/BF00284180.  Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403.  doi: 10.1142/S0219891606000847.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[5]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[6]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[13]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[14]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[18]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]