[1]
|
G. H. Hardy, Note on a theorem of Hilbert, Mathematische Zeitschrift, 6 (1920), 314-317.
|
[2]
|
H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Revista Matemática de la Universidad Complutense de madrid, 10 (1997), 443-469.
|
[3]
|
F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Transactions of the American Mathematical Society, 356 (2004), 2149-2168.
|
[4]
|
Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proceedings of the American Mathematical Society, 130 (2002), 489-505.
|
[5]
|
Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its application to Schrödinger operators, Nonlinear Differential Equatons and Applications, 12 (2005), 243-263.
|
[6]
|
B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calculus of Variations and Partial Differential Equations, 23 (2005), 327-345.
|
[7]
|
Y. T. Shen, The Dirichlet problem for degenerate or singular elliptic equation of high order, Journal of China University of Science and Technology, 10 (1980), 1-11.
|
[8]
|
Y. T. Shen and X. K. Guo, Weighted Poincaré inequalities on unbounded domains and nonlinear elliptic boundary value problems, Acta Mathematica Scientia, 4 (1984), 277-286.
|
[9]
|
G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356 (2004), 2169-2196.
|
[10]
|
H. Brezis and M. Marcus, Hardy's inequalities revisited, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, Ser. IV 25 (1997), 217-237.
|
[11]
|
S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and marcus, Calc. of Variations and P.D.E., 25 (2006), 491-501.
|
[12]
|
S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev Inequalities, Journal de Mathématiques Pures et Appliquées, 87 (2007), 37-56.
|
[13]
|
J. Dávila and L. Dupaigne, Hardy-type inequalities, J. Eur. Math. Soc., 6 (2004), 335-365.
|
[14]
|
M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Annali Mat. Pura Appl., 80 (1968), 1-122.
|
[15]
|
A. Kristály and C. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity, J. Math. Anal. Appl., 352 (2009), 139-148.
|
[16]
|
Y. M. Chen, Regularity of solutions to the Dirichlet problem for degenerate elliptic equation, Chin. Ann. Math., Ser. B, 24 (2003), 529-540.
|
[17]
|
Y. T. Shen and Y. X. Yao, Nonlinear elliptic equations with critical potential and critical parameter, Proceedings of the Royal Society of Edinburgh, Sect. A, 136 (2006), 1041-1051.
|
[18]
|
M. M. Zou, "Sign-Changing Critical Point Theory," Springer-Verlag, New York, 2008.
|
[19]
|
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, 5 (1999), A.M.S.
|