• Previous Article
    Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications
  • CPAA Home
  • This Issue
  • Next Article
    Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation
November  2013, 12(6): 2577-2600. doi: 10.3934/cpaa.2013.12.2577

Four positive solutions of a quasilinear elliptic equation in $ R^N$

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  July 2012 Revised  October 2012 Published  May 2013

This paper deals with the existence of multiple positive solutions of a quasilinear elliptic equation \begin{eqnarray} -\Delta_p u+u^{p-1} = a(x)u^{q-1}+\lambda h(x) u^{r-1}, \text{in} R^N; \\ u\geq 0, \text{ a.e. }x \in R^N;\\ u \in W^{1,p}(R^N), \end{eqnarray} where $1 < p \leq 2$, $N>p$ and $1 < r < p$ $< q < p^* ( = \frac{pN}{N-p})$. A Nehari manifold is defined by a $C^1-$functional $I$ and is decomposed into two parts. Our work is to find four positive solutions of Eq. (1) when parameter $\lambda$ is sufficiently small.
Citation: Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577
References:
[1]

S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u+u=a(x)u^p+f(x)$ in $R^N$,, Calc. Var. Partial Differential Equations, 11 (2000), 63.  doi: 10.1007/s005260050003.  Google Scholar

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

M. Badiale and G. Citti, Concentration compactness principle and quasilinear elliptic equations in $R^n$,, Comm. Partial Differential Equations, 16 (1991), 1795.  doi: 10.1080/03605309108820823.  Google Scholar

[4]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[5]

J. Chabrowski and J. M. Bezzera do Ó, On semilinear elliptic equations involving concave and convex nonlinearities,, Math. Nachr., 233/234 (2002), 55.  doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I.  Google Scholar

[6]

K.-C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems,'', Progress in Nonlinear Differential Equations and their Applications, (1993).   Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method,, Arch. Ration. Mech. Anal., 148 (1999), 291.  doi: 10.1007/s002050050163.  Google Scholar

[8]

D. G. De Figueiredo, J.-P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems,, J. Funct. Anal., 199 (2003), 452.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[9]

I. Ekeland, On the variational principle,, J. Math. Anal. Appl., 47 (1974), 324.   Google Scholar

[10]

F. Gazzola, B. Peletier, P. Pucci and J. Serrin, Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters. {II},, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 947.  doi: 10.1016/S0294-1449(03)00013-1.  Google Scholar

[11]

T.-S. Hsu and H.-L. Lin, Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $R^N$,, J. Math. Anal. Appl., 365 (2010), 758.  doi: 10.1016/j.jmaa.2009.12.004.  Google Scholar

[12]

Y. Li and C. Zhao, A note on exponential decay properties of ground states for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 133 (2005), 2005.  doi: 10.1090/S0002-9939-05-07870-6.  Google Scholar

[13]

T.-F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, J. Math. Anal. Appl., 318 (2006), 253.  doi: 10.1016/j.jmaa.2005.05.057.  Google Scholar

[14]

T.-F. Wu, Multiplicity of positive solution of $p$-Laplacian problems with sign-changing weight functions,, Int. J. Math. Anal. (Ruse), 1 (2007), 557.   Google Scholar

[15]

T.-F. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $R^N$ involving sign-changing weight,, J. Funct. Anal., 258 (2010), 99.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

show all references

References:
[1]

S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u+u=a(x)u^p+f(x)$ in $R^N$,, Calc. Var. Partial Differential Equations, 11 (2000), 63.  doi: 10.1007/s005260050003.  Google Scholar

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

M. Badiale and G. Citti, Concentration compactness principle and quasilinear elliptic equations in $R^n$,, Comm. Partial Differential Equations, 16 (1991), 1795.  doi: 10.1080/03605309108820823.  Google Scholar

[4]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[5]

J. Chabrowski and J. M. Bezzera do Ó, On semilinear elliptic equations involving concave and convex nonlinearities,, Math. Nachr., 233/234 (2002), 55.  doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I.  Google Scholar

[6]

K.-C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems,'', Progress in Nonlinear Differential Equations and their Applications, (1993).   Google Scholar

[7]

L. Damascelli, F. Pacella and M. Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method,, Arch. Ration. Mech. Anal., 148 (1999), 291.  doi: 10.1007/s002050050163.  Google Scholar

[8]

D. G. De Figueiredo, J.-P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems,, J. Funct. Anal., 199 (2003), 452.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[9]

I. Ekeland, On the variational principle,, J. Math. Anal. Appl., 47 (1974), 324.   Google Scholar

[10]

F. Gazzola, B. Peletier, P. Pucci and J. Serrin, Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters. {II},, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 947.  doi: 10.1016/S0294-1449(03)00013-1.  Google Scholar

[11]

T.-S. Hsu and H.-L. Lin, Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $R^N$,, J. Math. Anal. Appl., 365 (2010), 758.  doi: 10.1016/j.jmaa.2009.12.004.  Google Scholar

[12]

Y. Li and C. Zhao, A note on exponential decay properties of ground states for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 133 (2005), 2005.  doi: 10.1090/S0002-9939-05-07870-6.  Google Scholar

[13]

T.-F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, J. Math. Anal. Appl., 318 (2006), 253.  doi: 10.1016/j.jmaa.2005.05.057.  Google Scholar

[14]

T.-F. Wu, Multiplicity of positive solution of $p$-Laplacian problems with sign-changing weight functions,, Int. J. Math. Anal. (Ruse), 1 (2007), 557.   Google Scholar

[15]

T.-F. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $R^N$ involving sign-changing weight,, J. Funct. Anal., 258 (2010), 99.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

[1]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[2]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[3]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[4]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[5]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[9]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[10]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[11]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]