November  2013, 12(6): 2601-2613. doi: 10.3934/cpaa.2013.12.2601

Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications

1. 

Department of Applied Mathematics, Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China, China

Received  July 2012 Revised  January 2013 Published  May 2013

Let $R^n_+$ be the $n$-dimensional upper half Euclidean space, $m$ be a positive integer. In this paper, we consider the following system of integral equations on $R^n_+$: \begin{eqnarray} u(x)=\int_{R^n_+}G(x,y)v^q(y)dy, \\ v(x)=\int_{R^n_+}G(x,y)u^p(y)dy, \end{eqnarray} where \begin{eqnarray} G(x,y)=\frac{c_n}{|x-y|^{n-2m}}\int_0^{\frac{4x_ny_n}{|x-y|^2}}\frac{z^{m-1}}{(z+1)^{\frac{n}{2}}}dz \end{eqnarray} with $0 < 2m < n$ and $p,q>1$. Nonexistence of positive solution is proved by using the method of moving planes in integral forms. We also obtain the equivalence between the system of integral equations and corresponding partial differential equations.
Citation: Dongyan Li, Yongzhong Wang. Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2601-2613. doi: 10.3934/cpaa.2013.12.2601
References:
[1]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirchlet problems, Math.Z., 261 (2009), 805-827. doi: 10.1007/s00209-008-0352-3.

[2]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.

[3]

Y. Fang and J. Zhang, Nonexistence of positive solition for an integral equation on $R^n_+$, Commun. Pure Appl. Anal., 12 (2013), 663-678. doi: 10.3934/cpaa.2013.12.663.

[4]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv, 73 (1998), 206-231. doi: 10.1007/s000140050052.

[5]

J. Wei and X. Xu, Classification of solution of higer order conformally invariant equations, Math. Ann., 313 (1999), 207-288. doi: 10.1007/s002080050258.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59 (2006), 330-343. doi: 10.1002/cpa.20130.

[7]

W. Chen, C. Li and B. Ou, Qualitative problems of solutions for a system of integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[9]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, appear to in Commun. Pure Appl. Anal., 2012.

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Commun. Pure Appl. Anal., 4 (2005), 1-8. doi: 10.3934/cpaa.2005.4.1.

[11]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 4 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[12]

C. Jin and C. Li, Symmetry of solutions to some system of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[13]

W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations," AIMS Book Series on Differ. Equ. Dyn. Syst., 4 (2010). doi: 10.3934/dcds.2009.24.1167.

[14]

C. Jin and C. Li, Quantitative analysis of some system of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[16]

W. Chen, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.

[17]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integal equations, Commun. Pure Appl. Anal., 6 (2009), 1925-1932. doi: 10.3934/cpaa.2009.8.1925.

[18]

L. Ma and D. Z. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[19]

L. Ma and D. Z. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949. doi: 10.1016/j.jmaa.2007.12.064.

[20]

B. Ou, A Remark on a singular integral equation, Houston J. Math., 25 (1999), 181-184.

[21]

J. Liu, Y. Guo and Y. Zhang, Liouville type theorems for polyharmonic system in $R^n$, J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

show all references

References:
[1]

W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirchlet problems, Math.Z., 261 (2009), 805-827. doi: 10.1007/s00209-008-0352-3.

[2]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.

[3]

Y. Fang and J. Zhang, Nonexistence of positive solition for an integral equation on $R^n_+$, Commun. Pure Appl. Anal., 12 (2013), 663-678. doi: 10.3934/cpaa.2013.12.663.

[4]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv, 73 (1998), 206-231. doi: 10.1007/s000140050052.

[5]

J. Wei and X. Xu, Classification of solution of higer order conformally invariant equations, Math. Ann., 313 (1999), 207-288. doi: 10.1007/s002080050258.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math, 59 (2006), 330-343. doi: 10.1002/cpa.20130.

[7]

W. Chen, C. Li and B. Ou, Qualitative problems of solutions for a system of integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[9]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, appear to in Commun. Pure Appl. Anal., 2012.

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Commun. Pure Appl. Anal., 4 (2005), 1-8. doi: 10.3934/cpaa.2005.4.1.

[11]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 4 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[12]

C. Jin and C. Li, Symmetry of solutions to some system of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[13]

W. Chen and C. Li, "Methods on Nonlinear Elliptic Equations," AIMS Book Series on Differ. Equ. Dyn. Syst., 4 (2010). doi: 10.3934/dcds.2009.24.1167.

[14]

C. Jin and C. Li, Quantitative analysis of some system of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[16]

W. Chen, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.

[17]

C. Liu and S. Qiao, Symmetry and monotonicity for a system of integal equations, Commun. Pure Appl. Anal., 6 (2009), 1925-1932. doi: 10.3934/cpaa.2009.8.1925.

[18]

L. Ma and D. Z. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[19]

L. Ma and D. Z. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949. doi: 10.1016/j.jmaa.2007.12.064.

[20]

B. Ou, A Remark on a singular integral equation, Houston J. Math., 25 (1999), 181-184.

[21]

J. Liu, Y. Guo and Y. Zhang, Liouville type theorems for polyharmonic system in $R^n$, J. Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

[1]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[2]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[3]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[4]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure and Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[5]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[6]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

[8]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[9]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[10]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[11]

Sufang Tang, Jingbo Dou. Quantitative analysis of a system of integral equations with weight on the upper half space. Communications on Pure and Applied Analysis, 2022, 21 (1) : 121-140. doi: 10.3934/cpaa.2021171

[12]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[13]

Dorina Mitrea and Marius Mitrea. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic Research Announcements, 1996, 2: 92-97.

[14]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[15]

Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121

[16]

Huaiyu Zhou, Jingbo Dou. Classifications of positive solutions to an integral system involving the multilinear fractional integral inequality. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022070

[17]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems and Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[18]

Yazhou Han. Integral equations on compact CR manifolds. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2187-2204. doi: 10.3934/dcds.2020358

[19]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[20]

Roman Chapko, B. Tomas Johansson. Integral equations for biharmonic data completion. Inverse Problems and Imaging, 2019, 13 (5) : 1095-1111. doi: 10.3934/ipi.2019049

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]