• Previous Article
    Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two
  • CPAA Home
  • This Issue
  • Next Article
    Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications
November  2013, 12(6): 2615-2625. doi: 10.3934/cpaa.2013.12.2615

A stability result for the Stokes-Boussinesq equations in infinite 3d channels

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, United States

2. 

Isfahan University of Technology, Isfahan, Iran

Received  August 2012 Revised  November 2013 Published  May 2013

We consider the Stokes-Boussinesq (and the stationary Na\-vier-Stokes-Boussinesq) equations in a slanted, i.e. not aligned with the gravity's direction, 3d channel and with an arbitrary Rayleigh number. For the front-like initial data and under the no-slip boundary condition for the flow and no-flux boundary condition for the reactant temperature, we derive uniform estimates on the burning rate and the flow velocity, which can be interpreted as stability results for the laminar front.
Citation: Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17 (1964), 35-92.

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation," ICIAM 99 (Edinburgh), 1322, Oxford Univ. Press, Oxford, 2000.

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 407-437.

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability, Comm. Pure Appl. Math., 56 (2003), 1781-1804.

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow, Ann. of Math., 168 (2008), 643-674.

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions, Nonlinearity, 19 (2006), 2605-2615.

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows, Geom. Funct. Anal., 18 (2008), 1145-1167.

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows, J. Differential Equations, 237 (2007), 343-371.

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate, Comm. Pure Appl. Math., 60 (2007), 1443-1487.

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system, Comm. Math. Phys., 292 (2009), 417-429.

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077-1082.

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294-298.

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions," Consultants Bureau [Plenum], New York, 1985. Translated from the Russian by Donald H. McNeill.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17 (1964), 35-92.

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation," ICIAM 99 (Edinburgh), 1322, Oxford Univ. Press, Oxford, 2000.

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 407-437.

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability, Comm. Pure Appl. Math., 56 (2003), 1781-1804.

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow, Ann. of Math., 168 (2008), 643-674.

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions, Nonlinearity, 19 (2006), 2605-2615.

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows, Geom. Funct. Anal., 18 (2008), 1145-1167.

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows, J. Differential Equations, 237 (2007), 343-371.

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate, Comm. Pure Appl. Math., 60 (2007), 1443-1487.

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system, Comm. Math. Phys., 292 (2009), 417-429.

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077-1082.

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294-298.

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions," Consultants Bureau [Plenum], New York, 1985. Translated from the Russian by Donald H. McNeill.

[1]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure and Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[2]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[3]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[4]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[5]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[6]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[7]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations and Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[8]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[9]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[10]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[11]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[12]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[13]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[14]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[15]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[16]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[17]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[18]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[19]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[20]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]