• Previous Article
    Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two
  • CPAA Home
  • This Issue
  • Next Article
    Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications
November  2013, 12(6): 2615-2625. doi: 10.3934/cpaa.2013.12.2615

A stability result for the Stokes-Boussinesq equations in infinite 3d channels

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, United States

2. 

Isfahan University of Technology, Isfahan, Iran

Received  August 2012 Revised  November 2013 Published  May 2013

We consider the Stokes-Boussinesq (and the stationary Na\-vier-Stokes-Boussinesq) equations in a slanted, i.e. not aligned with the gravity's direction, 3d channel and with an arbitrary Rayleigh number. For the front-like initial data and under the no-slip boundary condition for the flow and no-flux boundary condition for the reactant temperature, we derive uniform estimates on the burning rate and the flow velocity, which can be interpreted as stability results for the laminar front.
Citation: Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[6]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[7]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[10]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[13]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]