\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two

Abstract Related Papers Cited by
  • We study a drift-diffusion system on bounded domain in two-space dimension. This model is provided with a hetero-separative and homo-aggregative feature subject to a gradient of physical or chemical potential which is proportional to their densities. We extend a criterion of global-in-time existence of the solution, especially for non-radially symmetric case. Then we perform the blowup analysis such as the formation of collapses and collapse mass separations. A slightly different model describing cross chemotaxis is also discussed.
    Mathematics Subject Classification: Primary: 35K57, 35B40; Secondary: 92C15, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.doi: 0.1080/03605307908820113.

    [2]

    P. Biler, Local and global solvability of some systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.

    [3]

    P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis, 23 (1994), 1189-1209.doi: 10.1016/0362-546X(94)90101-5.

    [4]

    P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitating interaction of particles, II, Colloq. Math., 67 (1994), 297-308.

    [5]

    C. Conca and E. E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system, Applied Math Letters, (2012), 352-356.doi: 10.1016/j.aml.2011.09.013.

    [6]

    J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Discrete and Continuous Dynamical Systems B, 25 (2009), 109-121.doi: 10.3934/dcds.2009.25.109.

    [7]

    E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species, Differential and Integral Equations, 25 (2012), 251-288.

    [8]

    E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis, 29 (2009), 317-338.doi: 10.1524/anly.2009.1029.

    [9]

    E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differential and Integral Equations, 23 (2010), 451-462.

    [10]

    H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.doi: 10.1002/mana.19981950106.

    [11]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983.

    [12]

    T. Iwaniec and A. Verde, On the operator $L(f) = f \log |f|$, J. Funct. Anal., 169 (1999), 391-420.doi: 10.1006/jfan.1999.3443.

    [13]

    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.

    [14]

    M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential and Integral Equations, 4 (2003), 427-452.

    [15]

    M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052-1067.doi: 10.1016/j.jmaa.2007.11.017.

    [16]

    M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Comm. Pure Appl. Anal., 5 (2006), 97-106.doi: 10.3934/cpaa.2006.5.97.

    [17]

    T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.

    [18]

    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

    [19]

    T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.

    [20]

    F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Mech. Appl. Anal., 9 (2002), 533-562.

    [21]

    M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces," Marcel Dekker, New York, 1991.

    [22]

    T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50.

    [23]

    T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Meth. Appl. Anal., 8 (2001), 349-368.

    [24]

    T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct. Anal., 191 (2002), 17-51.doi: 10.1006/jfan.2001.3802.

    [25]

    I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems, J. Euro. Math. Soc., 7 (2005), 413-448.doi: 10.4171/JEMS/34.

    [26]

    T. Suzuki, "Free Energy and Self-Interacting Particles," Birkhäuser, Boston, 2005

    [27]

    T. Suzuki, "Mean Field Theories and Dual Variation," Atlantis Press, Amsterdam-Paris, 2008.

    [28]

    T. Suzuki2D Brownian point vortices and the drift-diffusion model, Discrete and Continuous Dynamical Systems Ser. S., accepted for publication.

    [29]

    T. SuzukiExclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part, J. Math. Pure Appl., accepted for publication. doi: 10.1016/j.matpur.2013.01.004.

    [30]

    T. Suzuki and T. Senba, "Applied Analysis - Mathematical Methods in Natural Science," 2nd edition, Imperial College Press, 2011.

    [31]

    G. Wolansky, Multi-components chemotactic system in the absence of conflicts, Euro. J. Appl. Math., 3 (2002), 641-661.doi: 10.1017/S0956792501004843.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return