November  2013, 12(6): 2627-2644. doi: 10.3934/cpaa.2013.12.2627

Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two

1. 

Departamento de Matemáticas, Universidad de los Andes, Bogotá

2. 

Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan

3. 

Division of Mathematical Science, Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikane-yama, Toyonaka, Osaka, 560-8531

Received  August 2012 Revised  January 2013 Published  May 2013

We study a drift-diffusion system on bounded domain in two-space dimension. This model is provided with a hetero-separative and homo-aggregative feature subject to a gradient of physical or chemical potential which is proportional to their densities. We extend a criterion of global-in-time existence of the solution, especially for non-radially symmetric case. Then we perform the blowup analysis such as the formation of collapses and collapse mass separations. A slightly different model describing cross chemotaxis is also discussed.
Citation: Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2627-2644. doi: 10.3934/cpaa.2013.12.2627
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 0.1080/03605307908820113.  Google Scholar

[2]

P. Biler, Local and global solvability of some systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.   Google Scholar

[3]

P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions,, Nonlinear Analysis, 23 (1994), 1189.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[4]

P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitating interaction of particles, II,, Colloq. Math., 67 (1994), 297.   Google Scholar

[5]

C. Conca and E. E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system,, Applied Math Letters, (2012), 352.  doi: 10.1016/j.aml.2011.09.013.  Google Scholar

[6]

J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete and Continuous Dynamical Systems B, 25 (2009), 109.  doi: 10.3934/dcds.2009.25.109.  Google Scholar

[7]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential and Integral Equations, 25 (2012), 251.   Google Scholar

[8]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317.  doi: 10.1524/anly.2009.1029.  Google Scholar

[9]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential and Integral Equations, 23 (2010), 451.   Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).   Google Scholar

[12]

T. Iwaniec and A. Verde, On the operator $L(f) = f \log |f|$,, J. Funct. Anal., 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[13]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[14]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differential and Integral Equations, 4 (2003), 427.   Google Scholar

[15]

M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation,, J. Math. Anal. Appl., 342 (2008), 1052.  doi: 10.1016/j.jmaa.2007.11.017.  Google Scholar

[16]

M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system,, Comm. Pure Appl. Anal., 5 (2006), 97.  doi: 10.3934/cpaa.2006.5.97.  Google Scholar

[17]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.   Google Scholar

[18]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.   Google Scholar

[19]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.   Google Scholar

[20]

F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation,, Mech. Appl. Anal., 9 (2002), 533.   Google Scholar

[21]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Marcel Dekker, (1991).   Google Scholar

[22]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21.   Google Scholar

[23]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time,, Meth. Appl. Anal., 8 (2001), 349.   Google Scholar

[24]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17.  doi: 10.1006/jfan.2001.3802.  Google Scholar

[25]

I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems,, J. Euro. Math. Soc., 7 (2005), 413.  doi: 10.4171/JEMS/34.  Google Scholar

[26]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Birkh\, (2005).   Google Scholar

[27]

T. Suzuki, "Mean Field Theories and Dual Variation,", Atlantis Press, (2008).   Google Scholar

[28]

T. Suzuki, 2D Brownian point vortices and the drift-diffusion model,, Discrete and Continuous Dynamical Systems Ser. S., ().   Google Scholar

[29]

T. Suzuki, Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part,, J. Math. Pure Appl., ().  doi: 10.1016/j.matpur.2013.01.004.  Google Scholar

[30]

T. Suzuki and T. Senba, "Applied Analysis - Mathematical Methods in Natural Science,", 2nd edition, (2011).   Google Scholar

[31]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, Euro. J. Appl. Math., 3 (2002), 641.  doi: 10.1017/S0956792501004843.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.  doi: 0.1080/03605307908820113.  Google Scholar

[2]

P. Biler, Local and global solvability of some systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.   Google Scholar

[3]

P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions,, Nonlinear Analysis, 23 (1994), 1189.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[4]

P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitating interaction of particles, II,, Colloq. Math., 67 (1994), 297.   Google Scholar

[5]

C. Conca and E. E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system,, Applied Math Letters, (2012), 352.  doi: 10.1016/j.aml.2011.09.013.  Google Scholar

[6]

J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up,, Discrete and Continuous Dynamical Systems B, 25 (2009), 109.  doi: 10.3934/dcds.2009.25.109.  Google Scholar

[7]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential and Integral Equations, 25 (2012), 251.   Google Scholar

[8]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317.  doi: 10.1524/anly.2009.1029.  Google Scholar

[9]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential and Integral Equations, 23 (2010), 451.   Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).   Google Scholar

[12]

T. Iwaniec and A. Verde, On the operator $L(f) = f \log |f|$,, J. Funct. Anal., 169 (1999), 391.  doi: 10.1006/jfan.1999.3443.  Google Scholar

[13]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[14]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differential and Integral Equations, 4 (2003), 427.   Google Scholar

[15]

M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation,, J. Math. Anal. Appl., 342 (2008), 1052.  doi: 10.1016/j.jmaa.2007.11.017.  Google Scholar

[16]

M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system,, Comm. Pure Appl. Anal., 5 (2006), 97.  doi: 10.3934/cpaa.2006.5.97.  Google Scholar

[17]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.   Google Scholar

[18]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.   Google Scholar

[19]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.   Google Scholar

[20]

F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation,, Mech. Appl. Anal., 9 (2002), 533.   Google Scholar

[21]

M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces,", Marcel Dekker, (1991).   Google Scholar

[22]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21.   Google Scholar

[23]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time,, Meth. Appl. Anal., 8 (2001), 349.   Google Scholar

[24]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17.  doi: 10.1006/jfan.2001.3802.  Google Scholar

[25]

I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems,, J. Euro. Math. Soc., 7 (2005), 413.  doi: 10.4171/JEMS/34.  Google Scholar

[26]

T. Suzuki, "Free Energy and Self-Interacting Particles,", Birkh\, (2005).   Google Scholar

[27]

T. Suzuki, "Mean Field Theories and Dual Variation,", Atlantis Press, (2008).   Google Scholar

[28]

T. Suzuki, 2D Brownian point vortices and the drift-diffusion model,, Discrete and Continuous Dynamical Systems Ser. S., ().   Google Scholar

[29]

T. Suzuki, Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part,, J. Math. Pure Appl., ().  doi: 10.1016/j.matpur.2013.01.004.  Google Scholar

[30]

T. Suzuki and T. Senba, "Applied Analysis - Mathematical Methods in Natural Science,", 2nd edition, (2011).   Google Scholar

[31]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, Euro. J. Appl. Math., 3 (2002), 641.  doi: 10.1017/S0956792501004843.  Google Scholar

[1]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[13]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[20]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]