November  2013, 12(6): 2645-2667. doi: 10.3934/cpaa.2013.12.2645

Decay rates for Kirchhoff-Timoshenko transmission problems

1. 

Department of Mathematics and Mechanics, Kharkov Karazin National University, 4, Svobody sq., Kharkov 61077, Ukraine

Received  August 2012 Revised  January 2013 Published  May 2013

A linear transmission problem for a thermoelastic Timoshenko beam model with Fourier low of heat conduction which has a Kirchhoff part with hereditary heat conduction of Gurtin-Pipkin type is considered. We prove that the system is exponentially stable under certain conditions on its parameters. The same result for the problem with purely elastic Kirchhoff part is obtained.
Citation: Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645
References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323.  doi: 10.1016/j.jmaa.2010.02.045.  Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215.   Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117.  doi: 10.1007/s00032-006-0050-8.  Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83.   Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833.   Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1.  doi: 10.1016/j.jmaa.2004.10.071.  Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989).   Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505.   Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137.  doi: 10.1080/014957301753251665.  Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950.   Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., ().  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65.   Google Scholar

show all references

References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323.  doi: 10.1016/j.jmaa.2010.02.045.  Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215.   Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117.  doi: 10.1007/s00032-006-0050-8.  Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83.   Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833.   Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1.  doi: 10.1016/j.jmaa.2004.10.071.  Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989).   Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505.   Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137.  doi: 10.1080/014957301753251665.  Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950.   Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., ().  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65.   Google Scholar

[1]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[2]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[3]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]