• Previous Article
    Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions
  • CPAA Home
  • This Issue
  • Next Article
    Long time dynamics for forced and weakly damped KdV on the torus
November  2013, 12(6): 2685-2696. doi: 10.3934/cpaa.2013.12.2685

Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system

1. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China, China, China

Received  September 2012 Revised  December 2012 Published  May 2013

In this paper, we are concerned with properties of positive solutions of the following fractional elliptic system \begin{eqnarray} {(-\Delta+I)}^{\frac{\alpha}{2}}u=\frac{u^pv^q}{|x|^\beta}, \quad {(-\Delta+I)}^{\frac{\alpha}{2}}v=\frac{v^pu^q}{|x|^\beta}\quad in\quad R^n, \end{eqnarray} where $n \geq 3$, $0 \le \beta < \alpha < n$, $ p, q>1$ and $p+q<\frac{n+\alpha-\beta}{n-\alpha+\beta}$. We show that positive solutions of the system are radially symmetric and belong to $L^\infty(R^n)$, which possibly implies that the solutions are locally Hölder continuous. Moreover, if $ \alpha=2, \beta =0,p\le q$, we show that positive solution pair $(u,v)$ of the system is unique and $u=v = U$, where $U$ is the unique positive solution of the problem \begin{eqnarray} -\Delta u + u = u^{p+q}\quad {\rm in}\quad \mathbb{R}^n. \end{eqnarray}
Citation: Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685
References:
[1]

W. Chen and C. Li, "Methods on Nolinear Elliptic Equation,", AIMS Ser. Differ. Dyn. Syst., (2010).   Google Scholar

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm Pure Appl Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[3]

X. Chen and J. Yang, Regularity and symmetry of positive solutions of an integral system,, Acta Math. Sci., 32B (2012), 1759.   Google Scholar

[4]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 86 (2001), 5043.  doi: 10.1103/PhysRevLett.86.5043.  Google Scholar

[5]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[6]

Y. Li, Remark on some conformlly invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[7]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.   Google Scholar

[8]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq 3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[9]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[10]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[11]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type systems,, Mathematical and Computer Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[12]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Diffe. Equa., 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04008.  Google Scholar

[13]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system,, Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

show all references

References:
[1]

W. Chen and C. Li, "Methods on Nolinear Elliptic Equation,", AIMS Ser. Differ. Dyn. Syst., (2010).   Google Scholar

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm Pure Appl Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[3]

X. Chen and J. Yang, Regularity and symmetry of positive solutions of an integral system,, Acta Math. Sci., 32B (2012), 1759.   Google Scholar

[4]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 86 (2001), 5043.  doi: 10.1103/PhysRevLett.86.5043.  Google Scholar

[5]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[6]

Y. Li, Remark on some conformlly invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[7]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.   Google Scholar

[8]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq 3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[9]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[10]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[11]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type systems,, Mathematical and Computer Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[12]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Diffe. Equa., 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04008.  Google Scholar

[13]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system,, Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[4]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[7]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[8]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[9]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]