November  2013, 12(6): 2697-2713. doi: 10.3934/cpaa.2013.12.2697

Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions

1. 

Universidade Federal de São Carlos, Departamento de Matemática, Rod. Washington Luís, Km 235, CEP. 13565-905, São Carlos, SP, Brazil, Brazil

Received  September 2012 Revised  October 2012 Published  May 2013

In this article we establish the existence and nonexistence of a weak solution to singular elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.
Citation: Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697
References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1.   Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259.   Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275.  doi: 10.1017/S0308210500001396.  Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998).   Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735.  doi: 10.1016/j.na.2005.01.030.  Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602.  doi: 10.1016/j.na.2010.12.015.  Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537.  doi: 10.1016/j.jmaa.2007.04.034.  Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857.  doi: 10.1016/j.na.2010.03.053.  Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091.  doi: 10.1016/j.na.2006.09.018.  Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703.  doi: 10.1016/j.na.2005.03.095.  Google Scholar

show all references

References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1.   Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259.   Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275.  doi: 10.1017/S0308210500001396.  Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998).   Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735.  doi: 10.1016/j.na.2005.01.030.  Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602.  doi: 10.1016/j.na.2010.12.015.  Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537.  doi: 10.1016/j.jmaa.2007.04.034.  Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857.  doi: 10.1016/j.na.2010.03.053.  Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091.  doi: 10.1016/j.na.2006.09.018.  Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703.  doi: 10.1016/j.na.2005.03.095.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[3]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[4]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[7]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[8]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[9]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[10]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[11]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[15]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[16]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[17]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[18]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

[Back to Top]