• Previous Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
  • CPAA Home
  • This Issue
  • Next Article
    Logarithmically improved criteria for Euler and Navier-Stokes equations
November  2013, 12(6): 2721-2737. doi: 10.3934/cpaa.2013.12.2721

Positive solutions of integral systems involving Bessel potentials

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097

Received  October 2012 Revised  December 2012 Published  May 2013

This paper is concerned with integral systems involving the Bessel potentials. Such integral systems are helpful to understand the corresponding PDE systems, such as some static Shrödinger systems with the critical and the supercritical exponents. We use the lifting lemma on regularity to obtain an integrability interval of solutions. Since the Bessel kernel does not have singularity at infinity, we extend the integrability interval to the whole $[1,\infty]$. Next, we use the method of moving planes to prove the radial symmetry for the positive solution of the system. Based on these results, by an iteration we obtain the estimate of the exponential decay of those solutions near infinity. Finally, we discuss the uniqueness of the positive solution of PDE system under some assumption.
Citation: Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721
References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations,, in, 46 (1999).   Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.   Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547.   Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981).   Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, Commun. Pure Appl. Anal., 10 (2011), 1111.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality,, Math. Res. Lett., 14 (2007), 373.   Google Scholar

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, coherent solitons in coupled nonlinear Schr\, 86 (2001), 5043.   Google Scholar

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations,, Math. Z., 273 (2013), 883.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.   Google Scholar

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.   Google Scholar

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, Math. Comput. Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations,", Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, (1970).   Google Scholar

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.   Google Scholar

[25]

W. Ziemer, "Weakly Differentiable Functions,", Graduate Texts in Math. Vol. 120, (1989).   Google Scholar

show all references

References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations,, in, 46 (1999).   Google Scholar

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.   Google Scholar

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547.   Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981).   Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential,, Commun. Pure Appl. Anal., 10 (2011), 1111.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality,, Math. Res. Lett., 14 (2007), 373.   Google Scholar

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, coherent solitons in coupled nonlinear Schr\, 86 (2001), 5043.   Google Scholar

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations,, Math. Z., 273 (2013), 883.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.   Google Scholar

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.  doi: 10.1137/080712301.  Google Scholar

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.   Google Scholar

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.   Google Scholar

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,, Math. Comput. Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations,", Grundlehren der Mathematischen Wissenschaften, (1983).   Google Scholar

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, (1970).   Google Scholar

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.   Google Scholar

[25]

W. Ziemer, "Weakly Differentiable Functions,", Graduate Texts in Math. Vol. 120, (1989).   Google Scholar

[1]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[2]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[6]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[7]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[11]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[12]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[16]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]