• Previous Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
  • CPAA Home
  • This Issue
  • Next Article
    Logarithmically improved criteria for Euler and Navier-Stokes equations
November  2013, 12(6): 2721-2737. doi: 10.3934/cpaa.2013.12.2721

Positive solutions of integral systems involving Bessel potentials

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097

Received  October 2012 Revised  December 2012 Published  May 2013

This paper is concerned with integral systems involving the Bessel potentials. Such integral systems are helpful to understand the corresponding PDE systems, such as some static Shrödinger systems with the critical and the supercritical exponents. We use the lifting lemma on regularity to obtain an integrability interval of solutions. Since the Bessel kernel does not have singularity at infinity, we extend the integrability interval to the whole $[1,\infty]$. Next, we use the method of moving planes to prove the radial symmetry for the positive solution of the system. Based on these results, by an iteration we obtain the estimate of the exponential decay of those solutions near infinity. Finally, we discuss the uniqueness of the positive solution of PDE system under some assumption.
Citation: Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721
References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations, in "Amer. Math. Soc. Colloq. Publ.," 46 AMS, Providence, RI, 1999.

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547-564.

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, in "Mathematical Analysis and Applications," vol. 7a Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential, Commun. Pure Appl. Anal., 10 (2011), 1111-1119. doi: 10.3934/cpaa.2011.10.1111.

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett., 86 (2001), 5043-5046.

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905. doi: 10.1007/s00209-012-1036-6.

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403-439. doi: 10.1016/j.anihpc.2004.03.004.

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949. doi: 10.1016/j.jmaa.2007.12.064.

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system, Math. Comput. Modelling, 49 (2009), 379-385. doi: 10.1016/j.mcm.2008.06.010.

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations," Grundlehren der Mathematischen Wissenschaften, Vol. 258, Springer-Verlag, New York, 1983.

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function," Princetion Math. Series, Vol. 30, Princetion University Press, Princetion, NJ, 1970.

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.

[25]

W. Ziemer, "Weakly Differentiable Functions," Graduate Texts in Math. Vol. 120, Springer-Verlag, New York, 1989.

show all references

References:
[1]

J. Bourgain, Global solutions of nonlinear Schrödinger equations, in "Amer. Math. Soc. Colloq. Publ.," 46 AMS, Providence, RI, 1999.

[2]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.

[3]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547-564.

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, in "Mathematical Analysis and Applications," vol. 7a Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential, Commun. Pure Appl. Anal., 10 (2011), 1111-1119. doi: 10.3934/cpaa.2011.10.1111.

[9]

F. Hang, On the integral systems related to Hardy-Littlewood-sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457. doi: 10.1007/s00526-006-0013-5.

[11]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett., 86 (2001), 5043-5046.

[12]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905. doi: 10.1007/s00209-012-1036-6.

[13]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.

[14]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.

[15]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[16]

Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

[17]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.

[18]

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403-439. doi: 10.1016/j.anihpc.2004.03.004.

[19]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949. doi: 10.1016/j.jmaa.2007.12.064.

[20]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type system, Math. Comput. Modelling, 49 (2009), 379-385. doi: 10.1016/j.mcm.2008.06.010.

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[22]

J. Smoller, "Shock Waves and Reaction-diffusion Equations," Grundlehren der Mathematischen Wissenschaften, Vol. 258, Springer-Verlag, New York, 1983.

[23]

E. Stein, "Singular Integrals and Differentiability Properties of Function," Princetion Math. Series, Vol. 30, Princetion University Press, Princetion, NJ, 1970.

[24]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.

[25]

W. Ziemer, "Weakly Differentiable Functions," Graduate Texts in Math. Vol. 120, Springer-Verlag, New York, 1989.

[1]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[2]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[3]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[4]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[5]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[6]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[7]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[8]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[9]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[10]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[11]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[12]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[13]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[14]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[15]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[16]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

[17]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[18]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[19]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[20]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure and Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]