-
Previous Article
On general fractional abstract Cauchy problem
- CPAA Home
- This Issue
-
Next Article
Positive solutions of integral systems involving Bessel potentials
Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
1. | Department of Mathematics, Fuzhou University, Fuzhou 350002, China |
References:
[1] |
D. Amadori and W. Shen, The slow erosion limit in a model of granular flow,, Arch. Ration. Mech. Anal., 199 (2011), 1.
doi: 10.1007/s00205-010-0313-y. |
[2] |
D. Amadori and W. Shen, Global existence of large BV solutions in a model of granular flow,, Comm. Partial Differential Equations, 34 (2009), 1003.
doi: 10.1080/03605300902892279. |
[3] |
A. Bressan, Contractive metrics for nonlinear hyperbolic systems,, Indiana Univ. Math. J., 37 (1988), 409.
doi: 10.1512/iumj.1988.37.37021. |
[4] |
A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).
|
[5] |
T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).
|
[6] |
S. Chaplygin, On gas jets,, Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1.
|
[7] |
G. Q. Chen and P. G. LeFloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81.
doi: 10.1007/s00205-002-0229-2. |
[8] |
W. R. Dai, Asymptotic behavior of global classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chin. Ann. Math. Ser. B., 27 (2006), 263.
doi: 10.1007/s11401-004-0523-4. |
[9] |
W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilinear hyperbolic systems with linearly degenerate characteristic fields,, J. Differential Equations, 235 (2007), 127.
doi: 10.1016/j.jde.2006.12.020. |
[10] |
Y. Z. Duan, Asymptotic behavior of classical solutions of reducible quasilinear hyperbolic systems with characteristic boundaries,, J. Math. Anal. Appl., 351 (2009), 186.
doi: 10.1016/j.jmaa.2008.10.012. |
[11] |
Y. Z. Duan and K. C. Xu, Long time behavior of classical solutions to the generalized Goursat problem of quasilinear hyperbolic systems,, Nonlinear Anal., 72 (2010), 209.
doi: 10.1016/j.na.2009.06.048. |
[12] |
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.
doi: 10.1002/cpa.3160180408. |
[13] |
J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws,, Bull. Amer. Math. Soc., 73 (1967).
doi: 10.1090/S0002-9904-1967-11666-5. |
[14] |
D. X. Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, (2000).
|
[15] |
D. X. Kong, K. F. Liu and Y. Z. Wang, Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases,, Sci. China Math., 53 (2010), 719.
doi: 10.1007/s11425-010-0060-4. |
[16] |
D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$,, J. Math. Phys., 47 (2006).
doi: 10.1063/1.2158435. |
[17] |
D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 28 (2003), 1203.
doi: 10.1081/PDE-120021192. |
[18] |
T. T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems,", Research in Applied Mathematics, (1994).
|
[19] |
T. T. Li and Y. J. Peng, Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form,, Nonlinear Anal., 55 (2003), 937.
doi: 10.1016/j.na.2003.08.010. |
[20] |
T. T. Li and Y. J. Peng, The mixed initial-boundary value problem for reducible quasilinear hyperbolic systems with linearly degenerate characteristics,, Nonlinear Anal., 52 (2003), 573.
doi: 10.1016/S0362-546X(02)00123-2. |
[21] |
T. T. Li, Y. J. Peng and J. Ruiz, Entropy solutions for linearly degenerate hyperbolic systems of rich type,, J. Math. Pures Appl., 91 (2009), 553.
doi: 10.1016/j.matpur.2009.01.008. |
[22] |
T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 19 (1994), 1263.
doi: 10.1080/03605309408821055. |
[23] |
T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.
doi: 10.1016/0362-546X(95)00228-N. |
[24] |
T. T. Li and W. C. Yu, "Boundary Value Problems for Quasilinear Hyperbolic Systems,", Duke University Mathematics Series V, (1985).
|
[25] |
J. Liu and K. Pan, Global existence and asymptotic behavior of classical solutions to Goursat problem for diagonalizable quasilinear hyperbolic system,, Boundary Value Problems, 2012 (2012).
doi: 10.1186/1687-2770-2012-36. |
[26] |
J. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Math. Meth. Appl. Sci., 30 (2007), 479.
doi: 10.1002/mma.797. |
[27] |
T. Nishida and J. Smoller, Solutions in the large for some nonlinear conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.
doi: 10.1002/cpa.3160260205. |
[28] |
D. Serre, "Systems of Conservation Laws $I, II$,", Cambridge University Press, (2000).
|
[29] |
D. Serre, Multidimensional shock interaction for a Chaplygin gas,, Arch. Rational Mech. Anal., 191 (2009), 539.
doi: 10.1007/s00205-008-0110-z. |
[30] |
Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 600.
doi: 10.1016/j.na.2010.03.029. |
[31] |
H. S. Tsien, Two dimensional subsonic flow of compressible fluids,, J. Aeron. Sci., 6 (1939), 399.
|
[32] |
T. von Karman, Compressibility effects in aerodynamics,, J. Aeron. Sci., 8 (1941), 337.
|
[33] |
Y. Zhou, The Goursat problem for reducible quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. A, 13 (1992), 437.
|
[34] |
Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.
doi: 10.1142/S0252959904000044. |
[35] |
Z. Q. Shao, Asymptotic behaviour of global classical solutions to the mixed initial-boundary value problem for diagonalizable quasilinear hyperbolic systems,, IMA J. Appl. Math., 78 (2013), 1.
doi: 10.1093/imamat/hxr032. |
show all references
References:
[1] |
D. Amadori and W. Shen, The slow erosion limit in a model of granular flow,, Arch. Ration. Mech. Anal., 199 (2011), 1.
doi: 10.1007/s00205-010-0313-y. |
[2] |
D. Amadori and W. Shen, Global existence of large BV solutions in a model of granular flow,, Comm. Partial Differential Equations, 34 (2009), 1003.
doi: 10.1080/03605300902892279. |
[3] |
A. Bressan, Contractive metrics for nonlinear hyperbolic systems,, Indiana Univ. Math. J., 37 (1988), 409.
doi: 10.1512/iumj.1988.37.37021. |
[4] |
A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, (2000).
|
[5] |
T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Pitman Monographs and Surveys in Pure and Applied Mathematics, (1989).
|
[6] |
S. Chaplygin, On gas jets,, Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1.
|
[7] |
G. Q. Chen and P. G. LeFloch, Existence theory for the isentropic Euler equations,, Arch. Rational Mech. Anal., 166 (2003), 81.
doi: 10.1007/s00205-002-0229-2. |
[8] |
W. R. Dai, Asymptotic behavior of global classical solutions of quasilinear non-strictly hyperbolic systems with weakly linear degeneracy,, Chin. Ann. Math. Ser. B., 27 (2006), 263.
doi: 10.1007/s11401-004-0523-4. |
[9] |
W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilinear hyperbolic systems with linearly degenerate characteristic fields,, J. Differential Equations, 235 (2007), 127.
doi: 10.1016/j.jde.2006.12.020. |
[10] |
Y. Z. Duan, Asymptotic behavior of classical solutions of reducible quasilinear hyperbolic systems with characteristic boundaries,, J. Math. Anal. Appl., 351 (2009), 186.
doi: 10.1016/j.jmaa.2008.10.012. |
[11] |
Y. Z. Duan and K. C. Xu, Long time behavior of classical solutions to the generalized Goursat problem of quasilinear hyperbolic systems,, Nonlinear Anal., 72 (2010), 209.
doi: 10.1016/j.na.2009.06.048. |
[12] |
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,, Comm. Pure Appl. Math., 18 (1965), 697.
doi: 10.1002/cpa.3160180408. |
[13] |
J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws,, Bull. Amer. Math. Soc., 73 (1967).
doi: 10.1090/S0002-9904-1967-11666-5. |
[14] |
D. X. Kong, "Cauchy Problem for Quasilinear Hyperbolic Systems,", MSJ Memoirs, (2000).
|
[15] |
D. X. Kong, K. F. Liu and Y. Z. Wang, Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases,, Sci. China Math., 53 (2010), 719.
doi: 10.1007/s11425-010-0060-4. |
[16] |
D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$,, J. Math. Phys., 47 (2006).
doi: 10.1063/1.2158435. |
[17] |
D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 28 (2003), 1203.
doi: 10.1081/PDE-120021192. |
[18] |
T. T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems,", Research in Applied Mathematics, (1994).
|
[19] |
T. T. Li and Y. J. Peng, Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form,, Nonlinear Anal., 55 (2003), 937.
doi: 10.1016/j.na.2003.08.010. |
[20] |
T. T. Li and Y. J. Peng, The mixed initial-boundary value problem for reducible quasilinear hyperbolic systems with linearly degenerate characteristics,, Nonlinear Anal., 52 (2003), 573.
doi: 10.1016/S0362-546X(02)00123-2. |
[21] |
T. T. Li, Y. J. Peng and J. Ruiz, Entropy solutions for linearly degenerate hyperbolic systems of rich type,, J. Math. Pures Appl., 91 (2009), 553.
doi: 10.1016/j.matpur.2009.01.008. |
[22] |
T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 19 (1994), 1263.
doi: 10.1080/03605309408821055. |
[23] |
T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data,, Nonlinear Anal., 28 (1997), 1299.
doi: 10.1016/0362-546X(95)00228-N. |
[24] |
T. T. Li and W. C. Yu, "Boundary Value Problems for Quasilinear Hyperbolic Systems,", Duke University Mathematics Series V, (1985).
|
[25] |
J. Liu and K. Pan, Global existence and asymptotic behavior of classical solutions to Goursat problem for diagonalizable quasilinear hyperbolic system,, Boundary Value Problems, 2012 (2012).
doi: 10.1186/1687-2770-2012-36. |
[26] |
J. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Math. Meth. Appl. Sci., 30 (2007), 479.
doi: 10.1002/mma.797. |
[27] |
T. Nishida and J. Smoller, Solutions in the large for some nonlinear conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.
doi: 10.1002/cpa.3160260205. |
[28] |
D. Serre, "Systems of Conservation Laws $I, II$,", Cambridge University Press, (2000).
|
[29] |
D. Serre, Multidimensional shock interaction for a Chaplygin gas,, Arch. Rational Mech. Anal., 191 (2009), 539.
doi: 10.1007/s00205-008-0110-z. |
[30] |
Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Nonlinear Anal., 73 (2010), 600.
doi: 10.1016/j.na.2010.03.029. |
[31] |
H. S. Tsien, Two dimensional subsonic flow of compressible fluids,, J. Aeron. Sci., 6 (1939), 399.
|
[32] |
T. von Karman, Compressibility effects in aerodynamics,, J. Aeron. Sci., 8 (1941), 337.
|
[33] |
Y. Zhou, The Goursat problem for reducible quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. A, 13 (1992), 437.
|
[34] |
Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chinese Ann. Math. Ser. B, 25 (2004), 37.
doi: 10.1142/S0252959904000044. |
[35] |
Z. Q. Shao, Asymptotic behaviour of global classical solutions to the mixed initial-boundary value problem for diagonalizable quasilinear hyperbolic systems,, IMA J. Appl. Math., 78 (2013), 1.
doi: 10.1093/imamat/hxr032. |
[1] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[2] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[3] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[4] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[5] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[6] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[7] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[8] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[9] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[10] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[11] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[12] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[13] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[14] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[15] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[16] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[17] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[18] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[19] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[20] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]