• Previous Article
    Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
November  2013, 12(6): 2753-2772. doi: 10.3934/cpaa.2013.12.2753

On general fractional abstract Cauchy problem

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China, China

2. 

Department of Basic Courses, Xi'an Technological University, North Institute of Information Engineering, Xi'an 710025, China

Received  October 2012 Revised  January 2013 Published  May 2013

This paper is concerned with general fractional Cauchy problems of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ in infinite-dimensional Banach spaces. A new notion, named general fractional resolvent of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ is developed. Some of its properties are obtained. Moreover, some sufficient conditions are presented to guarantee that the mild solutions and strong solutions of homogeneous and inhomogeneous general fractional Cauchy problem exist. An illustrative example is presented.
Citation: Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753
References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

show all references

References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[3]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[4]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[7]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[8]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[12]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[13]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]