November  2013, 12(6): 2773-2786. doi: 10.3934/cpaa.2013.12.2773

Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China, China

Received  October 2012 Revised  February 2013 Published  May 2013

In the present paper, the existence and multiplicity of solutions for Kirchhoff type problem involving critical exponent with Dirichlet boundary value conditions are obtained via the variational method.
Citation: Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773
References:
[1]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[2]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for p-Kirchhoff type problems with critical exponents,, Electronic J. Differential Equations, 105 (2011), 1.   Google Scholar

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 41 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, J. Math. Anal. Appl., 394 (2012), 488.  doi: 10.1016/j.jmaa.2012.04.025.  Google Scholar

[5]

H. Brezis and E. Lieb, A relation between pointwise conergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[6]

C. O. Alves, F. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[7]

C. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, Nonlinear Anal., 71 (2009), 4883.  doi: 10.1016/j.na.2009.03.065.  Google Scholar

[8]

C. O. Alves, F. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, Differential Equation and Applications, 23 (2010), 409.   Google Scholar

[9]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[10]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $R^3$,, J. Math. Anal. Appl., 369 (2010), 564.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[11]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, Nonlinear Anal., 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[12]

J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth,, J. Differential Equations, 253 (2012), 2314.  doi: 10.1016/j.jde.2012.05.023.  Google Scholar

[13]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[14]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang-index,, J. Differential Equations, 221 (2006), 246.  doi: 10.1016/j.jde.2005.03.006,.  Google Scholar

[15]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, J. Appl. Math. Comput., 39 (2012), 473.  doi: 10.1007/s12190-120-0536-1.  Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Application to Differetial Equations,", in: CBMS Reg. Conf. Series. Math. 65, (1986).   Google Scholar

[17]

S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées,, Bull. Acad. Sci. URSS, 17-26 (1940), 17.   Google Scholar

[18]

S. I. Pohožaev, A certain class of quasilinear hyperbolic equations,, Mat. Sb. (NS) \textbf{138} (1975), 138 (1975), 152.  doi: 10.1070/SM1975v025n01ABEH002203.  Google Scholar

[19]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1,.  Google Scholar

[20]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^3$,, Nonlinear Anal. Real World Appl., 12 (2011), 1278.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[21]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2012), 1813.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[22]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, J. Differential Equations, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[23]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, Nonlinear Anal., 73 (2010), 25.  doi: 10.1016/j.na.2010.02.008.  Google Scholar

[24]

Z. T. Zhang and K. Perera, Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

show all references

References:
[1]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition,, Nonlinear Anal., 70 (2009), 1275.  doi: 10.1016/j.na.2008.02.011.  Google Scholar

[2]

A. Hamydy, M. Massar and N. Tsouli, Existence of solution for p-Kirchhoff type problems with critical exponents,, Electronic J. Differential Equations, 105 (2011), 1.   Google Scholar

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 41 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems,, J. Math. Anal. Appl., 394 (2012), 488.  doi: 10.1016/j.jmaa.2012.04.025.  Google Scholar

[5]

H. Brezis and E. Lieb, A relation between pointwise conergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[6]

C. O. Alves, F. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85.  doi: 10.1016/j.camwa.2005.01.008.  Google Scholar

[7]

C. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems,, Nonlinear Anal., 71 (2009), 4883.  doi: 10.1016/j.na.2009.03.065.  Google Scholar

[8]

C. O. Alves, F. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth,, Differential Equation and Applications, 23 (2010), 409.   Google Scholar

[9]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[10]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $R^3$,, J. Math. Anal. Appl., 369 (2010), 564.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[11]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential,, Nonlinear Anal., 75 (2012), 3470.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[12]

J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth,, J. Differential Equations, 253 (2012), 2314.  doi: 10.1016/j.jde.2012.05.023.  Google Scholar

[13]

J. J. Sun and C. L. Tang, Existence and multipicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[14]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang-index,, J. Differential Equations, 221 (2006), 246.  doi: 10.1016/j.jde.2005.03.006,.  Google Scholar

[15]

L. Wei and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations,, J. Appl. Math. Comput., 39 (2012), 473.  doi: 10.1007/s12190-120-0536-1.  Google Scholar

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Application to Differetial Equations,", in: CBMS Reg. Conf. Series. Math. 65, (1986).   Google Scholar

[17]

S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées,, Bull. Acad. Sci. URSS, 17-26 (1940), 17.   Google Scholar

[18]

S. I. Pohožaev, A certain class of quasilinear hyperbolic equations,, Mat. Sb. (NS) \textbf{138} (1975), 138 (1975), 152.  doi: 10.1070/SM1975v025n01ABEH002203.  Google Scholar

[19]

T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243.  doi: 10.1016/S0893-9659(03)80038-1,.  Google Scholar

[20]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $R^3$,, Nonlinear Anal. Real World Appl., 12 (2011), 1278.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[21]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $R^3$,, J. Differential Equations, 252 (2012), 1813.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[22]

Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions,, J. Differential Equations, 253 (2012), 2285.  doi: 10.1016/j.jde.2012.05.017.  Google Scholar

[23]

Y. Yang and J. H. Zhang, Positive and negative solutions of a class of nonlocal problems,, Nonlinear Anal., 73 (2010), 25.  doi: 10.1016/j.na.2010.02.008.  Google Scholar

[24]

Z. T. Zhang and K. Perera, Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[4]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[5]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[6]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[15]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[16]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[20]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (33)

Other articles
by authors

[Back to Top]