-
Previous Article
Analytic integrability for some degenerate planar systems
- CPAA Home
- This Issue
-
Next Article
Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
Convergence rates for elliptic reiterated homogenization problems
1. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
References:
[1] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," Studies in North-Holland, 1978.
doi: 10.1115/1.3424588. |
[2] |
M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date, Appl. Math. Optimization, 15 (1987), 93-107.
doi: 10.1007/BF01442648. |
[3] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization, Comm. Pure. Appl. Math., 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607. |
[4] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form, Comm. Pure. Appl. Math., 42 (1989), 139-172.
doi: 10.1002/cpa.3160420203. |
[5] |
M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization, Comm. Pure. Appl. Math., 44 (1991), 897-910.
doi: 10.1002/cpa.3160440805. |
[6] |
C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().
|
[7] |
C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().
|
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Heidel berg, New York, (1998).
doi: 10.1007/978-3-642-61798-0. |
show all references
References:
[1] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," Studies in North-Holland, 1978.
doi: 10.1115/1.3424588. |
[2] |
M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date, Appl. Math. Optimization, 15 (1987), 93-107.
doi: 10.1007/BF01442648. |
[3] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization, Comm. Pure. Appl. Math., 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607. |
[4] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form, Comm. Pure. Appl. Math., 42 (1989), 139-172.
doi: 10.1002/cpa.3160420203. |
[5] |
M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization, Comm. Pure. Appl. Math., 44 (1991), 897-910.
doi: 10.1002/cpa.3160440805. |
[6] |
C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().
|
[7] |
C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().
|
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Heidel berg, New York, (1998).
doi: 10.1007/978-3-642-61798-0. |
[1] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[2] |
Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009 |
[3] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[4] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
[5] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[6] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[7] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[8] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[9] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[10] |
Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767 |
[11] |
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 |
[12] |
Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773 |
[13] |
Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 |
[14] |
Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 |
[15] |
Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems and Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149 |
[16] |
Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503 |
[17] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 |
[18] |
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 |
[19] |
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001 |
[20] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]