Citation: |
[1] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," Studies in North-Holland, 1978.doi: 10.1115/1.3424588. |
[2] |
M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date, Appl. Math. Optimization, 15 (1987), 93-107.doi: 10.1007/BF01442648. |
[3] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization, Comm. Pure. Appl. Math., 40 (1987), 803-847.doi: 10.1002/cpa.3160400607. |
[4] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form, Comm. Pure. Appl. Math., 42 (1989), 139-172.doi: 10.1002/cpa.3160420203. |
[5] |
M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization, Comm. Pure. Appl. Math., 44 (1991), 897-910.doi: 10.1002/cpa.3160440805. |
[6] |
C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, preprint, arXiv:1103.0023. |
[7] |
C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions, preprint, arXiv:1201.1440. |
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Heidel berg, New York, (1998).doi: 10.1007/978-3-642-61798-0. |