November  2013, 12(6): 2787-2795. doi: 10.3934/cpaa.2013.12.2787

Convergence rates for elliptic reiterated homogenization problems

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

Received  March 2012 Revised  September 2012 Published  May 2013

In this paper, we study the convergence rates for the reiterated homogenization for equations of the form $-div(A(\frac{x}{\varepsilon},\frac{x}{\varepsilon^{2}})\nabla u_{\varepsilon})=f(x)$. As a consequence, we obtain the convergence rates in $L^{p}$ for solutions with Dirichlet boundary condition by a method based on the representation of elliptic equation solution by Green function. Meanwhile, the growth rate of Green function is found.
Citation: Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787
References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).  doi: 10.1115/1.3424588.  Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.  doi: 10.1007/BF01442648.  Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.  doi: 10.1002/cpa.3160400607.  Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.  doi: 10.1002/cpa.3160420203.  Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.  doi: 10.1002/cpa.3160440805.  Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().   Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

show all references

References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).  doi: 10.1115/1.3424588.  Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.  doi: 10.1007/BF01442648.  Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.  doi: 10.1002/cpa.3160400607.  Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.  doi: 10.1002/cpa.3160420203.  Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.  doi: 10.1002/cpa.3160440805.  Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().   Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[7]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[8]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[9]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[10]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]