-
Previous Article
Analytic integrability for some degenerate planar systems
- CPAA Home
- This Issue
-
Next Article
Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
Convergence rates for elliptic reiterated homogenization problems
1. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
References:
[1] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).
doi: 10.1115/1.3424588. |
[2] |
M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.
doi: 10.1007/BF01442648. |
[3] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.
doi: 10.1002/cpa.3160400607. |
[4] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.
doi: 10.1002/cpa.3160420203. |
[5] |
M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.
doi: 10.1002/cpa.3160440805. |
[6] |
C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, (). Google Scholar |
[7] |
C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, (). Google Scholar |
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).
doi: 10.1007/978-3-642-61798-0. |
show all references
References:
[1] |
A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).
doi: 10.1115/1.3424588. |
[2] |
M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.
doi: 10.1007/BF01442648. |
[3] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.
doi: 10.1002/cpa.3160400607. |
[4] |
M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.
doi: 10.1002/cpa.3160420203. |
[5] |
M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.
doi: 10.1002/cpa.3160440805. |
[6] |
C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, (). Google Scholar |
[7] |
C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, (). Google Scholar |
[8] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).
doi: 10.1007/978-3-642-61798-0. |
[1] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[2] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[3] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[4] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[5] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[6] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[7] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[8] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[9] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[10] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]