\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence rates for elliptic reiterated homogenization problems

Abstract Related Papers Cited by
  • In this paper, we study the convergence rates for the reiterated homogenization for equations of the form $-div(A(\frac{x}{\varepsilon},\frac{x}{\varepsilon^{2}})\nabla u_{\varepsilon})=f(x)$. As a consequence, we obtain the convergence rates in $L^{p}$ for solutions with Dirichlet boundary condition by a method based on the representation of elliptic equation solution by Green function. Meanwhile, the growth rate of Green function is found.
    Mathematics Subject Classification: Primary: 35J15; Secondary: 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," Studies in North-Holland, 1978.doi: 10.1115/1.3424588.

    [2]

    M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date, Appl. Math. Optimization, 15 (1987), 93-107.doi: 10.1007/BF01442648.

    [3]

    M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization, Comm. Pure. Appl. Math., 40 (1987), 803-847.doi: 10.1002/cpa.3160400607.

    [4]

    M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form, Comm. Pure. Appl. Math., 42 (1989), 139-172.doi: 10.1002/cpa.3160420203.

    [5]

    M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization, Comm. Pure. Appl. Math., 44 (1991), 897-910.doi: 10.1002/cpa.3160440805.

    [6]

    C. E. Kenig, F. H. Lin and Z. ShenConvergence rates in $L^2$ for elliptic homogenization problems, preprint, arXiv:1103.0023.

    [7]

    C. E. Kenig, F. H. Lin and Z. ShenPeriodic homogenization of Green function and Neumann functions, preprint, arXiv:1201.1440.

    [8]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Heidel berg, New York, (1998).doi: 10.1007/978-3-642-61798-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return