-
Previous Article
Well-posedness and long time behavior of an Allen-Cahn type equation
- CPAA Home
- This Issue
-
Next Article
Convergence rates for elliptic reiterated homogenization problems
Analytic integrability for some degenerate planar systems
1. | Department of Mathematics, University of Huelva, 21071-Huelva |
2. | Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida. |
References:
[1] |
A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.
doi: 10.1016/S0377-0427(02)00660-X. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.
doi: 10.1016/j.bulsci.2009.09.006. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.
doi: 10.1016/j.na.2010.03.046. |
[6] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.
doi: 10.1016/j.na.2009.09.012. |
[7] |
A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.
doi: 10.1216/RMJ-2011-41-1-1. |
[8] |
A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.
doi: 10.1016/j.nonrwa.2011.07.056. |
[9] |
A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.
doi: 10.1017/S0956792512000113. |
[10] |
A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225. Google Scholar |
[11] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.
doi: 10.5802/aif.1406. |
[12] |
A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).
|
[13] |
J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.
doi: 10.1006/jmaa.1997.5402. |
[14] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.
doi: 10.1006/jdeq.1998.3621. |
[15] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.
doi: 10.1017/S014338570200127X. |
[16] |
A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.
doi: 10.1088/0951-7715/13/3/311. |
[17] |
H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.
doi: 10.1016/j.jde.2006.03.012. |
[18] |
H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.
doi: 10.1016/j.jde.2006.10.004. |
[19] |
J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.
doi: 10.1142/S0218127402005315. |
[20] |
J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.
doi: 10.1016/S0096-3003(02)00941-4. |
[21] |
J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.
doi: 10.1142/S0218127407018865. |
[22] |
J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.
doi: 10.1142/S0218127411029082. |
[23] |
J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.
doi: 10.1016/j.jmaa.2005.10.017. |
[24] |
J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.
doi: 10.1142/S0218127403006352. |
[25] |
J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.
|
[26] |
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.
doi: 10.1137/S0036144595283575. |
[27] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375. Google Scholar |
[28] |
V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).
doi: 10.1007/978-0-8176-4727-8. |
[29] |
E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.
doi: 10.1006/jdeq.2001.4043. |
[30] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.
doi: /10.1006/jdeq.2000.3931. |
show all references
References:
[1] |
A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.
doi: 10.1016/S0377-0427(02)00660-X. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.
doi: 10.1016/j.bulsci.2009.09.006. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.
doi: 10.1016/j.na.2010.03.046. |
[6] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.
doi: 10.1016/j.na.2009.09.012. |
[7] |
A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.
doi: 10.1216/RMJ-2011-41-1-1. |
[8] |
A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.
doi: 10.1016/j.nonrwa.2011.07.056. |
[9] |
A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.
doi: 10.1017/S0956792512000113. |
[10] |
A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225. Google Scholar |
[11] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.
doi: 10.5802/aif.1406. |
[12] |
A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).
|
[13] |
J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.
doi: 10.1006/jmaa.1997.5402. |
[14] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.
doi: 10.1006/jdeq.1998.3621. |
[15] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.
doi: 10.1017/S014338570200127X. |
[16] |
A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.
doi: 10.1088/0951-7715/13/3/311. |
[17] |
H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.
doi: 10.1016/j.jde.2006.03.012. |
[18] |
H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.
doi: 10.1016/j.jde.2006.10.004. |
[19] |
J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.
doi: 10.1142/S0218127402005315. |
[20] |
J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.
doi: 10.1016/S0096-3003(02)00941-4. |
[21] |
J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.
doi: 10.1142/S0218127407018865. |
[22] |
J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.
doi: 10.1142/S0218127411029082. |
[23] |
J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.
doi: 10.1016/j.jmaa.2005.10.017. |
[24] |
J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.
doi: 10.1142/S0218127403006352. |
[25] |
J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.
|
[26] |
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.
doi: 10.1137/S0036144595283575. |
[27] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375. Google Scholar |
[28] |
V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).
doi: 10.1007/978-0-8176-4727-8. |
[29] |
E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.
doi: 10.1006/jdeq.2001.4043. |
[30] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.
doi: /10.1006/jdeq.2000.3931. |
[1] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[2] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[3] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[4] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[5] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[6] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[7] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[8] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[9] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[10] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[11] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[12] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[13] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[14] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[15] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[16] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[19] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[20] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]