-
Previous Article
Well-posedness and long time behavior of an Allen-Cahn type equation
- CPAA Home
- This Issue
-
Next Article
Convergence rates for elliptic reiterated homogenization problems
Analytic integrability for some degenerate planar systems
1. | Department of Mathematics, University of Huelva, 21071-Huelva |
2. | Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida. |
References:
[1] |
A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, Qual. Theory Dyn. Syst., 1 (2000), 133-156.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms, J. Comput. Appl. Math., 150 (2003), 193-216.
doi: 10.1016/S0377-0427(02)00660-X. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields, Bull. Sci. Math., 133 (2009), 806-816.
doi: 10.1016/j.bulsci.2009.09.006. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields, Nonlinear Anal., 73 (2010), 510-525.
doi: 10.1016/j.na.2010.03.046. |
[6] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.
doi: 10.1016/j.na.2009.09.012. |
[7] |
A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[8] |
A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[9] |
A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields, European J. Appl. Math., 23 (2012), 555-562.
doi: 10.1017/S0956792512000113. |
[10] |
A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems, Discrete Contin. Dyn. Syst., 33 (2013), 3225-3236. |
[11] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier (Grenoble), 44 (1994), 465-494.
doi: 10.5802/aif.1406. |
[12] |
A.D. Bruno, "Local Methods in Nonlinear Differential Equations," Springer Verlag, Berlin, 1989. |
[13] |
J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials, J. Math. Anal. Appl., 210 (1997), 268-278.
doi: 10.1006/jmaa.1997.5402. |
[14] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157 (1999), 163-182.
doi: 10.1006/jdeq.1998.3621. |
[15] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers, Ergodic Theory Dyn. Syst., 23 (2003), 417-428.
doi: 10.1017/S014338570200127X. |
[16] |
A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity, 13 (2000), 699-730.
doi: 10.1088/0951-7715/13/3/311. |
[17] |
H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems, J. Differential Equations, 227 (2006), 406-426.
doi: 10.1016/j.jde.2006.03.012. |
[18] |
H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems", J. Differential Equations, 232 (2007), 702-702.
doi: 10.1016/j.jde.2006.10.004. |
[19] |
J. Giné, Sufficient conditions for a center at a completely degenerate critical point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659-1666.
doi: 10.1142/S0218127402005315. |
[20] |
J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points, Appl. Math. Comput., 148 (2004), 849-868.
doi: 10.1016/S0096-3003(02)00941-4. |
[21] |
J. Giné, On the centers of planar analytic differential systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061-3070.
doi: 10.1142/S0218127407018865. |
[22] |
J. Giné, On the degenerate center problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383-1392.
doi: 10.1142/S0218127411029082. |
[23] |
J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation, J. Math. Anal. Appl., 319 (2006), 326-332.
doi: 10.1016/j.jmaa.2005.10.017. |
[24] |
J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[25] |
J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4), 13 (1980), 469-523. |
[26] |
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Rev., 38 (1996), 619-636.
doi: 10.1137/S0036144595283575. |
[27] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. |
[28] |
V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach," Birkhäuser Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[29] |
E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.
doi: 10.1006/jdeq.2001.4043. |
[30] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility, J. Differential Equations, 174 (2001), 237-251.
doi: /10.1006/jdeq.2000.3931. |
show all references
References:
[1] |
A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, Qual. Theory Dyn. Syst., 1 (2000), 133-156.
doi: 10.1007/BF02969475. |
[2] |
A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms, J. Comput. Appl. Math., 150 (2003), 193-216.
doi: 10.1016/S0377-0427(02)00660-X. |
[3] |
A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.
doi: 10.1088/0951-7715/22/2/009. |
[4] |
A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields, Bull. Sci. Math., 133 (2009), 806-816.
doi: 10.1016/j.bulsci.2009.09.006. |
[5] |
A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields, Nonlinear Anal., 73 (2010), 510-525.
doi: 10.1016/j.na.2010.03.046. |
[6] |
A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.
doi: 10.1016/j.na.2009.09.012. |
[7] |
A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[8] |
A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[9] |
A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields, European J. Appl. Math., 23 (2012), 555-562.
doi: 10.1017/S0956792512000113. |
[10] |
A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems, Discrete Contin. Dyn. Syst., 33 (2013), 3225-3236. |
[11] |
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier (Grenoble), 44 (1994), 465-494.
doi: 10.5802/aif.1406. |
[12] |
A.D. Bruno, "Local Methods in Nonlinear Differential Equations," Springer Verlag, Berlin, 1989. |
[13] |
J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials, J. Math. Anal. Appl., 210 (1997), 268-278.
doi: 10.1006/jmaa.1997.5402. |
[14] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157 (1999), 163-182.
doi: 10.1006/jdeq.1998.3621. |
[15] |
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers, Ergodic Theory Dyn. Syst., 23 (2003), 417-428.
doi: 10.1017/S014338570200127X. |
[16] |
A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity, 13 (2000), 699-730.
doi: 10.1088/0951-7715/13/3/311. |
[17] |
H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems, J. Differential Equations, 227 (2006), 406-426.
doi: 10.1016/j.jde.2006.03.012. |
[18] |
H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems", J. Differential Equations, 232 (2007), 702-702.
doi: 10.1016/j.jde.2006.10.004. |
[19] |
J. Giné, Sufficient conditions for a center at a completely degenerate critical point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659-1666.
doi: 10.1142/S0218127402005315. |
[20] |
J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points, Appl. Math. Comput., 148 (2004), 849-868.
doi: 10.1016/S0096-3003(02)00941-4. |
[21] |
J. Giné, On the centers of planar analytic differential systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061-3070.
doi: 10.1142/S0218127407018865. |
[22] |
J. Giné, On the degenerate center problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383-1392.
doi: 10.1142/S0218127411029082. |
[23] |
J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation, J. Math. Anal. Appl., 319 (2006), 326-332.
doi: 10.1016/j.jmaa.2005.10.017. |
[24] |
J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47-106.
doi: 10.1142/S0218127403006352. |
[25] |
J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4), 13 (1980), 469-523. |
[26] |
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Rev., 38 (1996), 619-636.
doi: 10.1137/S0036144595283575. |
[27] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; 8 (1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. |
[28] |
V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach," Birkhäuser Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[29] |
E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.
doi: 10.1006/jdeq.2001.4043. |
[30] |
M. A. Teixeira and J. Yang, The center-focus problem and reversibility, J. Differential Equations, 174 (2001), 237-251.
doi: /10.1006/jdeq.2000.3931. |
[1] |
Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577 |
[2] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[3] |
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335 |
[4] |
Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627 |
[5] |
Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029 |
[6] |
Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597 |
[7] |
Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55 |
[8] |
Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557 |
[9] |
Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657 |
[10] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[11] |
Vladimir S. Gerdjikov, Rossen I. Ivanov, Aleksander A. Stefanov. Riemann-Hilbert problem, integrability and reductions. Journal of Geometric Mechanics, 2019, 11 (2) : 167-185. doi: 10.3934/jgm.2019009 |
[12] |
Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719 |
[13] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
[14] |
Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 |
[15] |
Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299 |
[16] |
P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137 |
[17] |
Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure and Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119 |
[18] |
Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075 |
[19] |
Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177 |
[20] |
Jaume Llibre. Limit cycles of continuous piecewise differential systems separated by a parabola and formed by a linear center and a quadratic center. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022034 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]