November  2013, 12(6): 2797-2809. doi: 10.3934/cpaa.2013.12.2797

Analytic integrability for some degenerate planar systems

1. 

Department of Mathematics, University of Huelva, 21071-Huelva

2. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida.

Received  October 2012 Revised  February 2013 Published  May 2013

In the present paper we characterize the analytic integrability around the origin of a family of degenerate differential systems. Moreover, we study the analytic integrability of some degenerate systems through the orbital reversibility and from the existence of a Lie's symmetry for these systems. The results obtained for this family are similar to the results obtained when we characterize the analytic integrability of non-degenerate and nilpotent systems. The obtained results can be applied to compute the analytic integrable systems of any particular family of degenerate systems studied.
Citation: Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797
References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.  doi: 10.1007/BF02969475.  Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.  doi: 10.1016/j.na.2010.03.046.  Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.  doi: 10.1017/S0956792512000113.  Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225.   Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.  doi: 10.5802/aif.1406.  Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).   Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.  doi: 10.1006/jmaa.1997.5402.  Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.  doi: 10.1017/S014338570200127X.  Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.  doi: 10.1088/0951-7715/13/3/311.  Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.  doi: 10.1016/j.jde.2006.03.012.  Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.  doi: 10.1016/j.jde.2006.10.004.  Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.  doi: 10.1142/S0218127402005315.  Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.  doi: 10.1016/S0096-3003(02)00941-4.  Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.  doi: 10.1142/S0218127407018865.  Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.  doi: 10.1142/S0218127411029082.  Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.  doi: 10.1016/j.jmaa.2005.10.017.  Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.   Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.  doi: 10.1137/S0036144595283575.  Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375.   Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.  doi: /10.1006/jdeq.2000.3931.  Google Scholar

show all references

References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.  doi: 10.1007/BF02969475.  Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.  doi: 10.1016/j.na.2010.03.046.  Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.  doi: 10.1017/S0956792512000113.  Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225.   Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.  doi: 10.5802/aif.1406.  Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).   Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.  doi: 10.1006/jmaa.1997.5402.  Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.  doi: 10.1017/S014338570200127X.  Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.  doi: 10.1088/0951-7715/13/3/311.  Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.  doi: 10.1016/j.jde.2006.03.012.  Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.  doi: 10.1016/j.jde.2006.10.004.  Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.  doi: 10.1142/S0218127402005315.  Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.  doi: 10.1016/S0096-3003(02)00941-4.  Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.  doi: 10.1142/S0218127407018865.  Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.  doi: 10.1142/S0218127411029082.  Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.  doi: 10.1016/j.jmaa.2005.10.017.  Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.   Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.  doi: 10.1137/S0036144595283575.  Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375.   Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.  doi: /10.1006/jdeq.2000.3931.  Google Scholar

[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[4]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[11]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[12]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[13]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[14]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[15]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[16]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[20]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]