-
Previous Article
Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme
- CPAA Home
- This Issue
-
Next Article
Analytic integrability for some degenerate planar systems
Well-posedness and long time behavior of an Allen-Cahn type equation
1. | UMR 6086 CNRS. Laboratoire de Mathématiques et Applications - Université de Poitiers, SP2MI - Boulevard Marie et Pierre Curie - Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex, France |
References:
[1] |
A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.
doi: 10.1016/S0362-546X(01)00463-1. |
[2] |
M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.
|
[3] |
A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).
|
[4] |
M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.
|
[5] |
G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.
doi: 10.1016/j.jde.2006.12.021. |
[6] |
G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.
doi: 10.1016/j.na.2010.02.003. |
[7] |
A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.
doi: 10.1103/PhysRevLett.84.1511. |
[8] |
S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.
doi: 10.1007/3-540-44698-2_16. |
[9] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[10] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.
|
[11] |
A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.
doi: 10.1016/S0362-546X(00)00104-8. |
[12] |
C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).
|
[13] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).
doi: 10.1007/978-1-4684-0313-8. |
show all references
References:
[1] |
A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.
doi: 10.1016/S0362-546X(01)00463-1. |
[2] |
M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.
|
[3] |
A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).
|
[4] |
M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.
|
[5] |
G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.
doi: 10.1016/j.jde.2006.12.021. |
[6] |
G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.
doi: 10.1016/j.na.2010.02.003. |
[7] |
A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.
doi: 10.1103/PhysRevLett.84.1511. |
[8] |
S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.
doi: 10.1007/3-540-44698-2_16. |
[9] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[10] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.
|
[11] |
A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.
doi: 10.1016/S0362-546X(00)00104-8. |
[12] |
C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).
|
[13] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).
doi: 10.1007/978-1-4684-0313-8. |
[1] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[2] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[3] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[4] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[5] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[6] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[7] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[8] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[12] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[13] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[16] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]