November  2013, 12(6): 2811-2827. doi: 10.3934/cpaa.2013.12.2811

Well-posedness and long time behavior of an Allen-Cahn type equation

1. 

UMR 6086 CNRS. Laboratoire de Mathématiques et Applications - Université de Poitiers, SP2MI - Boulevard Marie et Pierre Curie - Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex, France

Received  August 2011 Revised  January 2012 Published  May 2013

The aim of this article is to study the existence and uniqueness of solutions for an equation of Allen-Cahn type and to prove the existence of the finite-dimensional global attractor as well as the existence of exponential attractors.
Citation: Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811
References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.  doi: 10.1016/S0362-546X(01)00463-1.  Google Scholar

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.   Google Scholar

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).   Google Scholar

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.   Google Scholar

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.  doi: 10.1016/j.jde.2006.12.021.  Google Scholar

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.  doi: 10.1016/j.na.2010.02.003.  Google Scholar

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.  doi: 10.1007/3-540-44698-2_16.  Google Scholar

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.   Google Scholar

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.  doi: 10.1016/S0362-546X(00)00104-8.  Google Scholar

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).   Google Scholar

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.  doi: 10.1016/S0362-546X(01)00463-1.  Google Scholar

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.   Google Scholar

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).   Google Scholar

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.   Google Scholar

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.  doi: 10.1016/j.jde.2006.12.021.  Google Scholar

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.  doi: 10.1016/j.na.2010.02.003.  Google Scholar

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.  doi: 10.1007/3-540-44698-2_16.  Google Scholar

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.   Google Scholar

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.  doi: 10.1016/S0362-546X(00)00104-8.  Google Scholar

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).   Google Scholar

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[2]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[3]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[6]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[7]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[12]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[16]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]