-
Previous Article
Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian
- CPAA Home
- This Issue
-
Next Article
Well-posedness and long time behavior of an Allen-Cahn type equation
Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme
1. | Indiana University - Mathematics Department, Bloomington, IN 47405, United States |
References:
[1] |
J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Birkh\, (1990).
|
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland Publishing Co., (1992).
|
[3] |
T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.
doi: 10.1023/A:1024422619616. |
[4] |
M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: abstract results and applications,, Comm. Math. Phys, 316 (2012), 723.
doi: 10.1007/s00220-012-1515-y. |
[5] |
V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors,, Discrete Contin. Dyn. Syst., 32 (2012), 2079.
doi: 10.3934/dcds.2012.32.2079. |
[6] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society, (2002).
|
[7] |
M. Coti Zelati, On the theory of global attractors and lyapunov functionals,, Set-Valued Var. Anal., 21 (2013), 127.
doi: 10.1007/s11228-012-0215-2. |
[8] |
M. Coti Zelati and F. Tone, Multivalued attractors and their approximation: applications to the Navier-Stokes equations,, Numer. Math., 122 (2012), 421.
doi: 10.1007/s00211-012-0463-y. |
[9] |
C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511546754. |
[10] |
C. B. Gentile and J. Simsen, On attractors for multivalued semigroups defined by generalized semiflows,, Set-Valued Anal., 16 (2008), 105.
doi: 10.1007/s11228-006-0037-1. |
[11] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988).
|
[12] |
N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.
doi: 10.1093/imanum/22.4.577. |
[13] |
A. V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations,, Abstr. Appl. Anal., 5 (2000), 33.
doi: 10.1155/S1085337500000191. |
[14] |
G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised Banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.
doi: 10.1007/s10884-011-9213-6. |
[15] |
M. Marion and R. Temam, Navier-Stokes equations: theory and approximation,, in, (1998), 503.
|
[16] |
V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.
doi: 10.1023/A:1008608431399. |
[17] |
V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.
doi: 10.3934/cpaa.2007.6.481. |
[18] |
J. C. Robinson, "Infinite-dimensional Dynamical Systems,", Cambridge University Press, (2001).
|
[19] |
H. Sohr, "The Navier-Stokes Equations,", Birkh\, (2001).
|
[20] |
R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", SIAM, (1995).
doi: 10.1137/1.9781611970050. |
[21] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
[22] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer-Verlag, (1997).
|
[23] |
F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two-dimensional Rayleigh-Bénard convection problem,, Anal. Appl. (Singap.), 9 (2011), 421.
doi: 10.1142/S0219530511001935. |
[24] |
F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 44 (2006), 29.
doi: 10.1137/040618527. |
[25] |
X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.
doi: 10.3934/dcds.2009.23.521. |
[26] |
X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization,, Math. Comp., 79 (2010), 259.
doi: 10.1090/S0025-5718-09-02256-X. |
[27] |
X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.
doi: 10.1007/s00211-012-0450-3. |
show all references
References:
[1] |
J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Birkh\, (1990).
|
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland Publishing Co., (1992).
|
[3] |
T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.
doi: 10.1023/A:1024422619616. |
[4] |
M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: abstract results and applications,, Comm. Math. Phys, 316 (2012), 723.
doi: 10.1007/s00220-012-1515-y. |
[5] |
V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors,, Discrete Contin. Dyn. Syst., 32 (2012), 2079.
doi: 10.3934/dcds.2012.32.2079. |
[6] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society, (2002).
|
[7] |
M. Coti Zelati, On the theory of global attractors and lyapunov functionals,, Set-Valued Var. Anal., 21 (2013), 127.
doi: 10.1007/s11228-012-0215-2. |
[8] |
M. Coti Zelati and F. Tone, Multivalued attractors and their approximation: applications to the Navier-Stokes equations,, Numer. Math., 122 (2012), 421.
doi: 10.1007/s00211-012-0463-y. |
[9] |
C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,", Cambridge University Press, (2001).
doi: 10.1017/CBO9780511546754. |
[10] |
C. B. Gentile and J. Simsen, On attractors for multivalued semigroups defined by generalized semiflows,, Set-Valued Anal., 16 (2008), 105.
doi: 10.1007/s11228-006-0037-1. |
[11] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988).
|
[12] |
N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.
doi: 10.1093/imanum/22.4.577. |
[13] |
A. V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations,, Abstr. Appl. Anal., 5 (2000), 33.
doi: 10.1155/S1085337500000191. |
[14] |
G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised Banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.
doi: 10.1007/s10884-011-9213-6. |
[15] |
M. Marion and R. Temam, Navier-Stokes equations: theory and approximation,, in, (1998), 503.
|
[16] |
V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.
doi: 10.1023/A:1008608431399. |
[17] |
V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.
doi: 10.3934/cpaa.2007.6.481. |
[18] |
J. C. Robinson, "Infinite-dimensional Dynamical Systems,", Cambridge University Press, (2001).
|
[19] |
H. Sohr, "The Navier-Stokes Equations,", Birkh\, (2001).
|
[20] |
R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", SIAM, (1995).
doi: 10.1137/1.9781611970050. |
[21] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).
|
[22] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer-Verlag, (1997).
|
[23] |
F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two-dimensional Rayleigh-Bénard convection problem,, Anal. Appl. (Singap.), 9 (2011), 421.
doi: 10.1142/S0219530511001935. |
[24] |
F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 44 (2006), 29.
doi: 10.1137/040618527. |
[25] |
X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.
doi: 10.3934/dcds.2009.23.521. |
[26] |
X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization,, Math. Comp., 79 (2010), 259.
doi: 10.1090/S0025-5718-09-02256-X. |
[27] |
X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.
doi: 10.1007/s00211-012-0450-3. |
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[4] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[5] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[6] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[7] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[10] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[11] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[12] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[15] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[16] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[17] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[18] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[19] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]