November  2013, 12(6): 2829-2838. doi: 10.3934/cpaa.2013.12.2829

Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme

1. 

Indiana University - Mathematics Department, Bloomington, IN 47405, United States

Received  November 2012 Revised  March 2013 Published  May 2013

In this short note, we exploit the tools of multivalued dynamical systems to prove that the stationary statistical properties of the fully implicit Euler scheme converge, as the time-step parameter vanishes, to the stationary statistical properties of the two-dimensional Navier-Stokes equations.
Citation: Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829
References:
[1]

J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Birkh\, (1990).   Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland Publishing Co., (1992).   Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[4]

M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: abstract results and applications,, Comm. Math. Phys, 316 (2012), 723.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[5]

V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors,, Discrete Contin. Dyn. Syst., 32 (2012), 2079.  doi: 10.3934/dcds.2012.32.2079.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society, (2002).   Google Scholar

[7]

M. Coti Zelati, On the theory of global attractors and lyapunov functionals,, Set-Valued Var. Anal., 21 (2013), 127.  doi: 10.1007/s11228-012-0215-2.  Google Scholar

[8]

M. Coti Zelati and F. Tone, Multivalued attractors and their approximation: applications to the Navier-Stokes equations,, Numer. Math., 122 (2012), 421.  doi: 10.1007/s00211-012-0463-y.  Google Scholar

[9]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[10]

C. B. Gentile and J. Simsen, On attractors for multivalued semigroups defined by generalized semiflows,, Set-Valued Anal., 16 (2008), 105.  doi: 10.1007/s11228-006-0037-1.  Google Scholar

[11]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988).   Google Scholar

[12]

N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.  doi: 10.1093/imanum/22.4.577.  Google Scholar

[13]

A. V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations,, Abstr. Appl. Anal., 5 (2000), 33.  doi: 10.1155/S1085337500000191.  Google Scholar

[14]

G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised Banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[15]

M. Marion and R. Temam, Navier-Stokes equations: theory and approximation,, in, (1998), 503.   Google Scholar

[16]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[17]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[18]

J. C. Robinson, "Infinite-dimensional Dynamical Systems,", Cambridge University Press, (2001).   Google Scholar

[19]

H. Sohr, "The Navier-Stokes Equations,", Birkh\, (2001).   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", SIAM, (1995).  doi: 10.1137/1.9781611970050.  Google Scholar

[21]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

[22]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer-Verlag, (1997).   Google Scholar

[23]

F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two-dimensional Rayleigh-Bénard convection problem,, Anal. Appl. (Singap.), 9 (2011), 421.  doi: 10.1142/S0219530511001935.  Google Scholar

[24]

F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 44 (2006), 29.  doi: 10.1137/040618527.  Google Scholar

[25]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

[26]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization,, Math. Comp., 79 (2010), 259.  doi: 10.1090/S0025-5718-09-02256-X.  Google Scholar

[27]

X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.  doi: 10.1007/s00211-012-0450-3.  Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Birkh\, (1990).   Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland Publishing Co., (1992).   Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[4]

M. D. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: abstract results and applications,, Comm. Math. Phys, 316 (2012), 723.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[5]

V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractors,, Discrete Contin. Dyn. Syst., 32 (2012), 2079.  doi: 10.3934/dcds.2012.32.2079.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society, (2002).   Google Scholar

[7]

M. Coti Zelati, On the theory of global attractors and lyapunov functionals,, Set-Valued Var. Anal., 21 (2013), 127.  doi: 10.1007/s11228-012-0215-2.  Google Scholar

[8]

M. Coti Zelati and F. Tone, Multivalued attractors and their approximation: applications to the Navier-Stokes equations,, Numer. Math., 122 (2012), 421.  doi: 10.1007/s00211-012-0463-y.  Google Scholar

[9]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,", Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[10]

C. B. Gentile and J. Simsen, On attractors for multivalued semigroups defined by generalized semiflows,, Set-Valued Anal., 16 (2008), 105.  doi: 10.1007/s11228-006-0037-1.  Google Scholar

[11]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", American Mathematical Society, (1988).   Google Scholar

[12]

N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.  doi: 10.1093/imanum/22.4.577.  Google Scholar

[13]

A. V. Kapustian and J. Valero, Attractors of multivalued semiflows generated by differential inclusions and their approximations,, Abstr. Appl. Anal., 5 (2000), 33.  doi: 10.1155/S1085337500000191.  Google Scholar

[14]

G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised Banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[15]

M. Marion and R. Temam, Navier-Stokes equations: theory and approximation,, in, (1998), 503.   Google Scholar

[16]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[17]

V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators,, Commun. Pure Appl. Anal., 6 (2007), 481.  doi: 10.3934/cpaa.2007.6.481.  Google Scholar

[18]

J. C. Robinson, "Infinite-dimensional Dynamical Systems,", Cambridge University Press, (2001).   Google Scholar

[19]

H. Sohr, "The Navier-Stokes Equations,", Birkh\, (2001).   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", SIAM, (1995).  doi: 10.1137/1.9781611970050.  Google Scholar

[21]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).   Google Scholar

[22]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,", Springer-Verlag, (1997).   Google Scholar

[23]

F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two-dimensional Rayleigh-Bénard convection problem,, Anal. Appl. (Singap.), 9 (2011), 421.  doi: 10.1142/S0219530511001935.  Google Scholar

[24]

F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 44 (2006), 29.  doi: 10.1137/040618527.  Google Scholar

[25]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

[26]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization,, Math. Comp., 79 (2010), 259.  doi: 10.1090/S0025-5718-09-02256-X.  Google Scholar

[27]

X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.  doi: 10.1007/s00211-012-0450-3.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[4]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[5]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[10]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[15]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[16]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[17]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[18]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[19]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[20]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]