Advanced Search
Article Contents
Article Contents

Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian

Abstract Related Papers Cited by
  • In this paper, we establish a unilateral global bifurcation result for a class of quasilinear periodic boundary problems with a sign-changing weight. By the Ljusternik-Schnirelmann theory, we first study the spectrum of the periodic $p$-Laplacian with the sign-changing weight. In particular, we show that there exist two simple, isolated, principal eigenvalues $\lambda_0^+$ and $\lambda_0^-$. Furthermore, under some natural hypotheses on perturbation function, we show that $(\lambda_0^\nu,0)$ is a bifurcation point of the above problems and there are two distinct unbounded sub-continua $C_\nu^{+}$ and $C_\nu^{-}$, consisting of the continuum $C_\nu$ emanating from $(\lambda_0^\nu, 0)$, where $\nu\in\{+,-\}$. As an application of the above result, we study the existence of one-sign solutions for a class of quasilinear periodic boundary problems with the sign-changing weight. Moreover, the uniqueness of one-sign solutions and the dependence of solutions on the parameter $\lambda$ are also studied.
    Mathematics Subject Classification: Primary: 34B18, 34C23; Secondary: 34D23, 34L05.


    \begin{equation} \\ \end{equation}
  • [1]

    M. S. Alber, R. Camassa, D. Holm and J. E. Marsden, The geometry of peaked solitons of a class of integrable PDE's, Lett. Math. Phys., 32 (1994), 37-151.doi: 10.2307/2152750.


    A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems, Comment. Math. Univ. Carolin., 31 (1990), 213-222.


    A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Advanced Mathematics No. 104, Cambridge Univ. Press, London, 2007.


    F. M. Atici and G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. Comput. Appl. Math., 132 (2001), 341-356.


    P. A. Binding and B. P. Rynne, The spectrum of the periodic $p$-Laplacian, J. Differentiable Equations, 235 (2007), 199-218.


    P. A. Binding and B. P. Rynne, Variational and non-variational eigenvalues of the $p$-Laplacian, J. Differentiable Equations, 244 (2008), 24-39.


    H. Brezis, "Analyse Fonctioneile. Theéorie et Applications," Masson, Paris, 1983.


    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.


    R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.


    A. Constantin, On the spectral problem for the periodic Camassa-Holm equation, J. Math. Anal. Appl., 210 (1997), 215-230.


    A. Constantin, A general-weighted Sturm-Liouville problem, Ann. Sci. Éc. Norm. Supér., 24 (1997), 767-782.


    A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 40 (2008), 175-211.


    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.


    A. Constantin and H. P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math., 52 (1999), 949-982.


    M. Cuesta, Eigenvalue problems for the $p$-Laplacian wirh indefinite weights, Electron. J. Differential Equations, 33 (2001), 1-9.


    G. Dai, Bifurcation and nodal solutions for $p$-Laplacian problems with non-asymptotic nonlinearity at 0 or $\infty$, Appl. Math. Lett., 26 (2013), 46-50.


    G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian, J. Differential Equations, 252 (2012), 2448-2468.


    G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without signum condition, J. Math. Anal. Appl., 397 (2013), 119-123.


    G. Dai, et al., Global bifurcation and nodal solutions of $N$-dimensional $p$-Laplacian in unit ball, Appl. Anal., (2013).doi: 10.1080/00036811.2012.678333.


    E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana U. Math J., 23 (1974), 1069-1076.


    E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002), 533-538.


    K. Deimling, "Nonlinear Functional Analysis," Springer-Verlag, New-York, 1987.


    M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$, J. Differential Equations, 80 (1989), 1-13.


    M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Lapiacian, J. Differential Equations, 92 (1991), 226-251.


    L. C. Evans, "Partial Differential Equations," AMS, Rhode Island, 1998.


    X. L. Fan and X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems, J. Math. Anal. Appl., 282 (2003), 453-464.


    X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852.


    J. R. Graef, L. Kong and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. Differential Equations, 245 (2008), 1185-1197.


    B. Im, E. Lee and Y. H. Lee, A global bifurcation phenomena for second order singular boundary value problems, J. Math. Anal. Appl., 308 (2005), 61-78.


    D. Jiang et. al., Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, J. Math. Anal. Appl., 286 (2003), 563-576.


    R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.


    M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics, in "Tsunami and Nonlinear Waves," Springer, Berlin, 2007, 31-49.


    Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian, J. Differential Equations, 229 (2006), 229-256.


    Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear Anal., 55 (2003), 245-254.


    W. Li and X. Liu, Eigenvalue problems for second-order nonlinear dynamic equations on time scales, J. Math. Anal. Appl., 318 (2006), 578-592.


    X. Liu and W. Li, Existence and uniqueness of positive periodic solutions of functional differential equations, J. Math. Anal. Appl., 293 (2004), 28-39.


    J. L\'opez-Gómez, "Spectral Theory and Nonlinear Functional Analysis," Chapman and Hall/CRC, Boca Raton, 2001.


    R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754-760.


    R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009) 4364-4376.


    R. Ma, J. Xu and X. Han, Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight, Nonlinear Anal., 74 (2011), 3379-3385.


    R. Ma, J. Xu and X. Han, Global structure of positive solutions for superlinear second-order periodic boundary value problems, Appl. Math. Comput., 218 (2012), 5982-5988.


    J. Mawhin and M.Willem, "Critical Point Theory and Hamiltonian Systems," Springer, New York, 1989.


    M. Montenego, Strong maximum principles for super-solutions of quasilinear elliptic equations, Nonlinear Ana1., 37 (1999) 431-448.


    D. O'Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations, Positivity, 10 (2006), 285-298.


    I. Peral, "Multiplicity of Solutions for the $p$-Laplacian," ICTP SMR 990/1, 1997.


    P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.


    P. H. Rabinowitz, On bifurcation from infinity, J. Funct. Anal., 14 (1973), 462-475.


    B. P. Rynne, $p$-Laplacian problems with jumping nonlinearities, J. Differential Equations, 226 (2006), 501-524.


    A. Szulkin, Ljusternik-Schnirelmann theory on $C^1$-manifolds, Ann. I. H. Poincaré, Anal. non linéaire, 5 (1988), 119-139.


    P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem, J. Differential Equations, 190 (2003), 643-662.


    E. Zeidler, "Nonlinear Functional Analysis and Its Applications," Vol. II/B, Berlin-Heidelberg-New York 1985.


    Z. Zhang and J. Wang, On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations, J. Math. Anal. Appl., 281 (2003), 99-107.

  • 加载中

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint