\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity criteria of smooth solution to the incompressible viscoelastic flow

Abstract Related Papers Cited by
  • In this paper, we study the regularity criterion of smooth solution to the Oldroyd model in $R^n(n=2,3)$. Firstly, we establish a regularity criterion in terms of the $BMO$ norm of the gradient of columns of the deformation tensor in two space dimensions; secondly, we obtain a Beale-Kato-Majda-type criterion in terms of vorticity with the $BMO$ norm in two and three space dimensions.
    Mathematics Subject Classification: Primary: 76A10, 76A05; Secondary: 35B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.

    [2]

    J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.

    [3]

    Y. Du, C. Liu and Q. T. ZhangA blow-up criterion for 3-D compressible viscoelasticity, arXiv:1202.3693.

    [4]

    W. N. E, T. J. Li and P. W. Zhang, Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys., 248 (2004), 409-427.

    [5]

    J. S. Fan and T. Ozawa, Regularity criterion for the incompressible viscoelastic fluid system, Houston J. Math., 37 (2011), 627-636.

    [6]

    C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193.

    [7]

    M. E. Gurtin, "An Introduction to Continuum Mechanics, Mathematics in Science and Engineering," Academic Press, Vol. 158, 1981.

    [8]

    L. B. He and L. Xu, Global well-posedness for viscoelastic fluid system in bounded domains, SIAM J. Math. Anal., 42 (2010), 2610-2625.

    [9]

    X. P. Hu and R. HyndA blowup criterion for ideal viscelastic flow, arXiv:1102.1113v1.

    [10]

    X. P. Hu and D. H. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.

    [11]

    X. P. Hu and D. H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.

    [12]

    H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173-194.

    [13]

    R. G. Larson, "The Structure and Rheology of Complex Fluids," Oxford University Press, New York, 1995.

    [14]

    Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math. Ser. B, 27 (2006), 565-580.

    [15]

    Z. LeiRotation-strain decomposition for the incompressible viscoelasticity in two dimensions, arXiv:1204.5763v1.

    [16]

    Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008), 371-398.

    [17]

    Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341.

    [18]

    Z. Lei and Y. Wang, Global solutions for micro-macro models of polymeric fluids, J. Differential Equations, 250 (2011), 3813-3830.

    [19]

    Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.

    [20]

    Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575-583.

    [21]

    F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., 58 (2005), 1437-1471.

    [22]

    F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., 61 (2008), 539-558.

    [23]

    C. Liu and N. G. Walkington, An Eulerian description of fluids containing viscohyperelastic particles, Arch. Rational Mech. Anal., 159 (2001), 229-252.

    [24]

    A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, Vol. 27, 2002.doi: 10.1007/978-1-4612-0873-0.

    [25]

    N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures Appl., 96 (2011), 502-520.

    [26]

    N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 191 (2013), 427-500.

    [27]

    J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234.

    [28]

    J. Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865.

    [29]

    J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Rational Mech. Anal., 198 (2010), 835-868.

    [30]

    E. M. Stein, "Harmonic Analysis," Princeton Univ. Press, Princeton, 1993.doi: 10.1007/978-1-4612-0873-0.

    [31]

    V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system, in "Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 7," Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973) 153-231 (in Russian).

    [32]

    Y. Z. Sun and Z. F. Zhang, Global well-posedness for the 2D micro-macro models in the bounded domain, Comm. Math. Phys., 303 (2011), 361-383.

    [33]

    B. Q. Yuan, Note On the blowup criterion of smooth solution to the incompressible viscoelastic flow, Discrete Contin. Dyn. Syst., 33 (2013), 2211-2219.

    [34]

    T. Zhang and D. Y. FangGlobal well-posedness for the incompressible viscoelastic fluids in the critical $L^p$ framework, arXiv:1101.5864.

    [35]

    T. Zhang and D. Y. FangGlobal existence in critical spaces for incompressible viscoelastic fluids, arXiv:1101.5862.

    [36]

    Y. Zhou and J. S. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl., 378 (2011), 169-172.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return