-
Previous Article
Free vibrations in space of the single mode for the Kirchhoff string
- CPAA Home
- This Issue
-
Next Article
A double saddle-node bifurcation theorem
Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition
1. | College of Mathematics and statistics, Chongqing University, Chongqing 401331, China, China, China, China |
References:
[1] |
F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations,, J. Evol. Equ., 8 (2008), 189.
doi: 10.1007/s00028-007-0377-9. |
[2] |
M. Bogoya, R. Ferreira and J. D. Rossi, A nonlocal nonlinear diffusion equation with blowing up boundary conditions,, J. Math. Anal. Appl., 337 (2008), 1284.
doi: 10.1016/j.jmaa.2007.04.049. |
[3] |
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271.
doi: 10.1016/j.matpur.2006.04.005. |
[4] |
C. Cortazar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problem that approximate the heat equation with Dirichlet boundary condition,, Israel J. Math., 170 (2009), 53.
doi: 10.1007/s11856-009-0019-8. |
[5] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion,, J. Differential Equations, 234 (2007), 360.
doi: 10.1016/j.jde.2006.12.002. |
[6] |
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, Trends in nonlinear analysis, (2003), 153. Google Scholar |
[7] |
A. Friedman and J. B. Mcleod, Blow-up of positive solution of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.
doi: 10.1512/iumj.1985.34.34025. |
[8] |
V. Galaktionov and J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations,, Discrete Contin. Dynam. Syst. A, 8 (2002), 399.
doi: 10.3934/dcds.2002.8.399. |
[9] |
J. Garcia-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.
doi: 10.1016/j.jde.2008.04.015. |
[10] |
J. Garcia-Melián and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators,, Nonlinear Anal., 71 (2009), 6116.
doi: 10.1016/j.na.2009.06.004. |
[11] |
J. Garcia-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Comm. Pure Appl. Anal., 8 (2009), 2037.
doi: 10.3934/cpaa.2009.8.2037. |
[12] |
J. Garcia-Melián and F. Quirós, Fujita exponents for evolution problems with nonlocal diffusion,, J. Evol. Equ., (2010), 147.
doi: 10.1007/s00028-009-0043-5. |
[13] |
P. Groisman and J. D. Rossi, Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions,, J. Comput. Appl. Math., 135 (2001), 135.
doi: 10.1016/S0377-0427(00)00571-9. |
[14] |
L. Hopf, Introduction to differential equations of physics,, Dover, 8 (1948), 55. Google Scholar |
[15] |
W. Liu, The blow-up rate of solutions of semilinear heat equation,, J. Differential Equations, 77 (1989), 104.
doi: 10.1016/0022-0396(89)90159-9. |
[16] |
A. Lacey, Mathematical analysis of thermal runaway for spatially inhomogeneous reactions,, SIAM J. Appl. Math., 8 (1983), 1350.
doi: 10.1137/0143090. |
[17] |
J. D. Murray, "Mathematical Biology,", Springer New York, (1993). Google Scholar |
[18] |
P. Morse and H. Feshback, Methods of theoretical physics,, McGraw Hill, 1 (1953). Google Scholar |
[19] |
S. X. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.
doi: 10.1007/s00033-007-7005-y. |
[20] |
A. F. Pazoto and J. D. Rossi, Asymptotic behaviour for a semilinear nonlocal equation,, Asymptotic Anal., 52 (2007), 143.
|
[21] |
M. Pérez-Llanos and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term,, Nonlinear Anal., 70 (2009), 1629.
doi: 10.1016/j.na.2008.02.076. |
[22] |
A. Samarski, V. A. Galaktionov, S. P. Kurdyunov and A. P. Mikailov, Blow-up in Quasilinear Parabolic Equations,, Walter de Gruyter, (1995). Google Scholar |
[23] |
F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations, 55 (1985), 204.
doi: 10.1016/0022-0396(84)90081-0. |
[24] |
S. N. Zheng, L. Z. Zhao and F. Chen, Blow-up rates in a parabolic system of ignition model,, Nonlinear Anal., 51 (2002), 663.
doi: 10.1016/S0362-546X(01)00849-5. |
show all references
References:
[1] |
F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations,, J. Evol. Equ., 8 (2008), 189.
doi: 10.1007/s00028-007-0377-9. |
[2] |
M. Bogoya, R. Ferreira and J. D. Rossi, A nonlocal nonlinear diffusion equation with blowing up boundary conditions,, J. Math. Anal. Appl., 337 (2008), 1284.
doi: 10.1016/j.jmaa.2007.04.049. |
[3] |
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271.
doi: 10.1016/j.matpur.2006.04.005. |
[4] |
C. Cortazar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problem that approximate the heat equation with Dirichlet boundary condition,, Israel J. Math., 170 (2009), 53.
doi: 10.1007/s11856-009-0019-8. |
[5] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion,, J. Differential Equations, 234 (2007), 360.
doi: 10.1016/j.jde.2006.12.002. |
[6] |
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, Trends in nonlinear analysis, (2003), 153. Google Scholar |
[7] |
A. Friedman and J. B. Mcleod, Blow-up of positive solution of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.
doi: 10.1512/iumj.1985.34.34025. |
[8] |
V. Galaktionov and J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations,, Discrete Contin. Dynam. Syst. A, 8 (2002), 399.
doi: 10.3934/dcds.2002.8.399. |
[9] |
J. Garcia-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21.
doi: 10.1016/j.jde.2008.04.015. |
[10] |
J. Garcia-Melián and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators,, Nonlinear Anal., 71 (2009), 6116.
doi: 10.1016/j.na.2009.06.004. |
[11] |
J. Garcia-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion,, Comm. Pure Appl. Anal., 8 (2009), 2037.
doi: 10.3934/cpaa.2009.8.2037. |
[12] |
J. Garcia-Melián and F. Quirós, Fujita exponents for evolution problems with nonlocal diffusion,, J. Evol. Equ., (2010), 147.
doi: 10.1007/s00028-009-0043-5. |
[13] |
P. Groisman and J. D. Rossi, Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions,, J. Comput. Appl. Math., 135 (2001), 135.
doi: 10.1016/S0377-0427(00)00571-9. |
[14] |
L. Hopf, Introduction to differential equations of physics,, Dover, 8 (1948), 55. Google Scholar |
[15] |
W. Liu, The blow-up rate of solutions of semilinear heat equation,, J. Differential Equations, 77 (1989), 104.
doi: 10.1016/0022-0396(89)90159-9. |
[16] |
A. Lacey, Mathematical analysis of thermal runaway for spatially inhomogeneous reactions,, SIAM J. Appl. Math., 8 (1983), 1350.
doi: 10.1137/0143090. |
[17] |
J. D. Murray, "Mathematical Biology,", Springer New York, (1993). Google Scholar |
[18] |
P. Morse and H. Feshback, Methods of theoretical physics,, McGraw Hill, 1 (1953). Google Scholar |
[19] |
S. X. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications,, Z. Angew. Math. Phys., 60 (2009), 377.
doi: 10.1007/s00033-007-7005-y. |
[20] |
A. F. Pazoto and J. D. Rossi, Asymptotic behaviour for a semilinear nonlocal equation,, Asymptotic Anal., 52 (2007), 143.
|
[21] |
M. Pérez-Llanos and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term,, Nonlinear Anal., 70 (2009), 1629.
doi: 10.1016/j.na.2008.02.076. |
[22] |
A. Samarski, V. A. Galaktionov, S. P. Kurdyunov and A. P. Mikailov, Blow-up in Quasilinear Parabolic Equations,, Walter de Gruyter, (1995). Google Scholar |
[23] |
F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations, 55 (1985), 204.
doi: 10.1016/0022-0396(84)90081-0. |
[24] |
S. N. Zheng, L. Z. Zhao and F. Chen, Blow-up rates in a parabolic system of ignition model,, Nonlinear Anal., 51 (2002), 663.
doi: 10.1016/S0362-546X(01)00849-5. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[6] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[7] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[8] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[9] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[10] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[11] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[12] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[13] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[14] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[17] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[18] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[19] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]