November  2013, 12(6): 2947-2971. doi: 10.3934/cpaa.2013.12.2947

Free vibrations in space of the single mode for the Kirchhoff string

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received  July 2012 Revised  January 2013 Published  May 2013

We study a single mode for the Kirchhoff string vibrating in space. In 3D a single mode is generally almost periodic in contrast to the 2D periodic case. In order to show a complete geometrical description of a single mode we prove some monotonicity properties of the almost periods of the solution, with respect to the mechanical energy and the momentum. As a consequence of these properties, we observe that a planar single mode in 3D is always unstable, while it is known that a single mode in 2D is stable (under a suitable definition of stability), if the energy is small.
Citation: Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964).   Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156.  doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157.   Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287.   Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006).   Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180.  doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130.  doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983).   Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197.  doi: 10.1088/0951-7715/14/5/314.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964).   Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156.  doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157.   Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287.   Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006).   Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180.  doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130.  doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983).   Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197.  doi: 10.1088/0951-7715/14/5/314.  Google Scholar

[1]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[6]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]