November  2013, 12(6): 2947-2971. doi: 10.3934/cpaa.2013.12.2947

Free vibrations in space of the single mode for the Kirchhoff string

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received  July 2012 Revised  January 2013 Published  May 2013

We study a single mode for the Kirchhoff string vibrating in space. In 3D a single mode is generally almost periodic in contrast to the 2D periodic case. In order to show a complete geometrical description of a single mode we prove some monotonicity properties of the almost periods of the solution, with respect to the mechanical energy and the momentum. As a consequence of these properties, we observe that a planar single mode in 3D is always unstable, while it is known that a single mode in 2D is stable (under a suitable definition of stability), if the energy is small.
Citation: Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17, New York: Dover, National bureau of standards, 1964.  Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation, J. Differential Equations, 214 (2005), 156-175. doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string, Q. Appl. Math., 3 (1945), 157-165.  Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string, Q. Appl. Math., 54 (1996), 287-305.  Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69 (1987), 310-321. doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications," Springer-Verlag, New York, 2006.  Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems, J. Differential Equations, 168 (2000), 180-199. doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind, J. London Math. Soc., 18 (1943), 130-132. doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics," Springer-Verlag, New York, 1983. Also available from: Ipparco Editore, 2007. http://ipparco.roma1.infn.it/pagine/deposito/2007/elements.pdf.  Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity, 14 (2001), 1197-1220. doi: 10.1088/0951-7715/14/5/314.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17, New York: Dover, National bureau of standards, 1964.  Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation, J. Differential Equations, 214 (2005), 156-175. doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string, Q. Appl. Math., 3 (1945), 157-165.  Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string, Q. Appl. Math., 54 (1996), 287-305.  Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69 (1987), 310-321. doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications," Springer-Verlag, New York, 2006.  Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems, J. Differential Equations, 168 (2000), 180-199. doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind, J. London Math. Soc., 18 (1943), 130-132. doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics," Springer-Verlag, New York, 1983. Also available from: Ipparco Editore, 2007. http://ipparco.roma1.infn.it/pagine/deposito/2007/elements.pdf.  Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity, 14 (2001), 1197-1220. doi: 10.1088/0951-7715/14/5/314.  Google Scholar

[1]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[2]

Josselin Garnier. The role of evanescent modes in randomly perturbed single-mode waveguides. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 455-472. doi: 10.3934/dcdsb.2007.8.455

[3]

Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297

[4]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[5]

Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301

[6]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[7]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[8]

Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211

[9]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[10]

Sergei A. Avdonin, Boris P. Belinskiy. Controllability of a string under tension. Conference Publications, 2003, 2003 (Special) : 57-67. doi: 10.3934/proc.2003.2003.57

[11]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[12]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[13]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[14]

Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191

[15]

Giuseppe Gaeta, Sebastian Walcher. Higher order normal modes. Journal of Geometric Mechanics, 2020, 12 (3) : 421-434. doi: 10.3934/jgm.2020026

[16]

Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301

[17]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[18]

Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021230

[19]

Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021106

[20]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]