November  2013, 12(6): 2973-2996. doi: 10.3934/cpaa.2013.12.2973

Non-isothermal cyclic fatigue in an oscillating elastoplastic beam

1. 

Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, 20133 Milano.

2. 

Mathematical Institute of the Silesian University, Na Rybníčku 1, 746 01 Opava

3. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1

Received  July 2012 Revised  February 2013 Published  May 2013

We propose a temperature dependent model for fatigue accumulation in an oscillating elastoplastic beam. The full system consists of the momentum and energy balance equations, and an evolution equation for the fatigue rate. The main modeling hypothesis is that the fatigue accumulation rate is proportional to the dissipation rate. In nontrivial cases, the process develops a thermal singularity in finite time. The main result consists in proving the existence and uniqueness of a strong solution in a time interval depending on the size of the data.
Citation: Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Non-isothermal cyclic fatigue in an oscillating elastoplastic beam. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2973-2996. doi: 10.3934/cpaa.2013.12.2973
References:
[1]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion,, Math. Modelling Numer. Anal., 45 (2011), 477.  doi: 10.1051/m2an/2010063.  Google Scholar

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.   Google Scholar

[3]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity,, SIAM J. Math. Anal., 13 (1982), 397.  doi: 10.1137/0513029.  Google Scholar

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909.  doi: 10.3934/dcdss.2013.6.909.  Google Scholar

[7]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dynam. Syst., 6 (2013), 369.  doi: 10.3934/dcdss.2013.6.369.  Google Scholar

[8]

E. Feireisl, M. Frémond, E. Rocca and G. Schimperna, A new approach to non-isothermal models for nematic liquid crystals,, Arch. Ration. Mech. Anal., 205 (2012), 651.  doi: 10.1007/s00205-012-0517-4.  Google Scholar

[9]

R. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. Angew. Math. Mech., 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, Izv. Akad. Nauk SSSR, 9 (1944), 583.   Google Scholar

[11]

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,, Engineering Fracture Mechanics, 21 (1985), 31.  doi: 10.1016/0013-7944(85)90052-9.  Google Scholar

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[13]

P. Krejčí, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations,", Gakuto Intern. Ser. Math. Sci. Appl., 8 (1996).   Google Scholar

[14]

P. Krejčí and J. Sprekels, On a system of nonlinear PDE's with temperature-dependent hysteresis in one-dimensional thermoplasticity,, J. Math. Anal. Appl., 209 (1997), 25.  doi: 10.1006/jmaa.1997.5304.  Google Scholar

[15]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci., 30 (2007), 2371.  doi: 10.1002/mma.892.  Google Scholar

[16]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, (1990).  doi: 10.1017/CBO9781139167970.  Google Scholar

[17]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.  doi: 10.1002/zamm.19280080202.  Google Scholar

[18]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[19]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Zeit. angew. Math. Phys., 61 (2010), 1.  doi: 10.1007/s00033-009-0007-1.  Google Scholar

show all references

References:
[1]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion,, Math. Modelling Numer. Anal., 45 (2011), 477.  doi: 10.1051/m2an/2010063.  Google Scholar

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.   Google Scholar

[3]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).  doi: 10.1007/978-1-4612-4048-8.  Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity,, SIAM J. Math. Anal., 13 (1982), 397.  doi: 10.1137/0513029.  Google Scholar

[5]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B, 407 (2012), 1415.  doi: 10.1016/j.physb.2011.10.017.  Google Scholar

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, Fatigue accumulation in an oscillating plate,, Discrete Cont. Dynam. Syst., 6 (2013), 909.  doi: 10.3934/dcdss.2013.6.909.  Google Scholar

[7]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dynam. Syst., 6 (2013), 369.  doi: 10.3934/dcdss.2013.6.369.  Google Scholar

[8]

E. Feireisl, M. Frémond, E. Rocca and G. Schimperna, A new approach to non-isothermal models for nematic liquid crystals,, Arch. Ration. Mech. Anal., 205 (2012), 651.  doi: 10.1007/s00205-012-0517-4.  Google Scholar

[9]

R. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. Angew. Math. Mech., 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, Izv. Akad. Nauk SSSR, 9 (1944), 583.   Google Scholar

[11]

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,, Engineering Fracture Mechanics, 21 (1985), 31.  doi: 10.1016/0013-7944(85)90052-9.  Google Scholar

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[13]

P. Krejčí, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations,", Gakuto Intern. Ser. Math. Sci. Appl., 8 (1996).   Google Scholar

[14]

P. Krejčí and J. Sprekels, On a system of nonlinear PDE's with temperature-dependent hysteresis in one-dimensional thermoplasticity,, J. Math. Anal. Appl., 209 (1997), 25.  doi: 10.1006/jmaa.1997.5304.  Google Scholar

[15]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci., 30 (2007), 2371.  doi: 10.1002/mma.892.  Google Scholar

[16]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, (1990).  doi: 10.1017/CBO9781139167970.  Google Scholar

[17]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.  doi: 10.1002/zamm.19280080202.  Google Scholar

[18]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[19]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Zeit. angew. Math. Phys., 61 (2010), 1.  doi: 10.1007/s00033-009-0007-1.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[3]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[13]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[14]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[17]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[18]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[19]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]