-
Previous Article
On symmetry results for elliptic equations with convex nonlinearities
- CPAA Home
- This Issue
-
Next Article
Non-isothermal cyclic fatigue in an oscillating elastoplastic beam
Bifurcations and periodic orbits in variable population interactions
1. | Department of Mathematics, Missouri State University, Springfield, MO 65897 |
References:
[1] |
Z. Abramsky, M. Rosenzweig and A. Subach, Gerbils under threat of owl predation: isoclines and isodars,, Oikos, 78 (1997), 81.
doi: 10.2307/3545803. |
[2] |
J. Addicott, Stability properties of 2-species models of mutualism: simulation studies,, Oecologia, 49 (1981), 42.
doi: 10.1007/BF00376896. |
[3] |
D. Boucher, The ecology of mutualism,, Annual Review Ecol. Syst., 13 (1982), 315.
doi: 0.1146/annurev.es.13.110182.001531. |
[4] |
J. H. Cushman and J. F. Addicott, Conditional interactions in ant-plant-herbivore mutualisms,, in, 13 (1991), 92.
doi: 10.1017/S0007485300051579. |
[5] |
B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems,", SIAM (2002)., (2002).
doi: 10.1137/1.9780898718195. |
[6] |
M. J. Hernandez and I. Barradas, Variation in the outcome of population interactions: bifurcations and catastrophes,, Math. Biol., 46 (2003), 571.
doi: 10.1007/s00285-002-0192-4. |
[7] |
M. J. Hernandez, Spatiotemporal dynamics in variable population interaction with density-dependent interaction coefficients,, Ecol. Modelling, 214 (2008), 3.
doi: 10.1007/s00285-002-0192-4. |
[8] |
J. Holland and D. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions,, Ecol. Letters, 12 (2009), 1357.
doi: 10.1111/j.1461-0248.2009.01390.x. |
[9] |
C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Disc. & Cont. Dynam. Syst., 32 (2012), 867.
doi: 10.3934/dcds.2012.32.867. |
[10] |
L. Ji and C. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge,, Nonl. Anal: Real World Appl., 11 (2010), 2285.
doi: 10.1016/j.nonrwa.2009.07.003. |
[11] |
K. Lan and C. Zhu, Phase portraits of predator-prey systems with harvesting rates,, Disc. & Cont. Dynam. Syst., 32 (2012), 901.
doi: 10.3934/dcds.2012.32.901. |
[12] |
T. Lara and J. Rebaza, Dynamics of transitions in population interactions,, Nonl. Analysis: Real World Appl., 13 (2012), 1268.
doi: 10.1016/j.nonrwa.2011.10.004. |
[13] |
B. Leard and J. Rebaza, Analysis of predator-prey models with continuous threshold harvesting,, Appl. Math. & Comp., 217 (2011), 5265.
doi: 10.1016/j.amc.2010.11.050. |
[14] |
M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Disc. & Cont. Dynam. Syst., 33 (2013), 2495.
doi: 10.3934/dcds.2013.33.2495. |
[15] |
T. Peschak, "Currents of Contrast: Life in South Africa's Two Oceans,", Struik Publ., (2006). Google Scholar |
[16] |
J. Rebaza, Dynamics of prey threshold harvesting and refuge,, J. Comp. & Appl. Math., 236 (2012), 1743.
doi: 10.1016/j.cam.2011.10.005. |
[17] |
M. Rosenzweig, "Species Diversity in Space and Time,", \emph{Species Diversity in Space and Time}, ().
doi: 10.1017/CBO9780511623387. |
[18] |
M. Rosenzweig, Z. Abramsky and A. Subach, Safety in numbers: Sophisticated vigilance by Allenby抯 gerbil,, Annual Review Ecol. Syst. Ecology, 94 (1997), 5713.
doi: 10.1073/pnas.94.11.5713. |
[19] |
D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The Amer. Naturalist, 194 (1989), 664.
doi: 10.1086/285003. |
[20] |
B. Zhang, Z. Zhang, Z. Li and Y. Tao, Stability analysis of a two-species model with transitions between population interactions,, J. Theor. Biol., 248 (2007), 145.
doi: 10.1016/j.jtbi.2007.05.004. |
show all references
References:
[1] |
Z. Abramsky, M. Rosenzweig and A. Subach, Gerbils under threat of owl predation: isoclines and isodars,, Oikos, 78 (1997), 81.
doi: 10.2307/3545803. |
[2] |
J. Addicott, Stability properties of 2-species models of mutualism: simulation studies,, Oecologia, 49 (1981), 42.
doi: 10.1007/BF00376896. |
[3] |
D. Boucher, The ecology of mutualism,, Annual Review Ecol. Syst., 13 (1982), 315.
doi: 0.1146/annurev.es.13.110182.001531. |
[4] |
J. H. Cushman and J. F. Addicott, Conditional interactions in ant-plant-herbivore mutualisms,, in, 13 (1991), 92.
doi: 10.1017/S0007485300051579. |
[5] |
B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems,", SIAM (2002)., (2002).
doi: 10.1137/1.9780898718195. |
[6] |
M. J. Hernandez and I. Barradas, Variation in the outcome of population interactions: bifurcations and catastrophes,, Math. Biol., 46 (2003), 571.
doi: 10.1007/s00285-002-0192-4. |
[7] |
M. J. Hernandez, Spatiotemporal dynamics in variable population interaction with density-dependent interaction coefficients,, Ecol. Modelling, 214 (2008), 3.
doi: 10.1007/s00285-002-0192-4. |
[8] |
J. Holland and D. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions,, Ecol. Letters, 12 (2009), 1357.
doi: 10.1111/j.1461-0248.2009.01390.x. |
[9] |
C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Disc. & Cont. Dynam. Syst., 32 (2012), 867.
doi: 10.3934/dcds.2012.32.867. |
[10] |
L. Ji and C. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge,, Nonl. Anal: Real World Appl., 11 (2010), 2285.
doi: 10.1016/j.nonrwa.2009.07.003. |
[11] |
K. Lan and C. Zhu, Phase portraits of predator-prey systems with harvesting rates,, Disc. & Cont. Dynam. Syst., 32 (2012), 901.
doi: 10.3934/dcds.2012.32.901. |
[12] |
T. Lara and J. Rebaza, Dynamics of transitions in population interactions,, Nonl. Analysis: Real World Appl., 13 (2012), 1268.
doi: 10.1016/j.nonrwa.2011.10.004. |
[13] |
B. Leard and J. Rebaza, Analysis of predator-prey models with continuous threshold harvesting,, Appl. Math. & Comp., 217 (2011), 5265.
doi: 10.1016/j.amc.2010.11.050. |
[14] |
M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Disc. & Cont. Dynam. Syst., 33 (2013), 2495.
doi: 10.3934/dcds.2013.33.2495. |
[15] |
T. Peschak, "Currents of Contrast: Life in South Africa's Two Oceans,", Struik Publ., (2006). Google Scholar |
[16] |
J. Rebaza, Dynamics of prey threshold harvesting and refuge,, J. Comp. & Appl. Math., 236 (2012), 1743.
doi: 10.1016/j.cam.2011.10.005. |
[17] |
M. Rosenzweig, "Species Diversity in Space and Time,", \emph{Species Diversity in Space and Time}, ().
doi: 10.1017/CBO9780511623387. |
[18] |
M. Rosenzweig, Z. Abramsky and A. Subach, Safety in numbers: Sophisticated vigilance by Allenby抯 gerbil,, Annual Review Ecol. Syst. Ecology, 94 (1997), 5713.
doi: 10.1073/pnas.94.11.5713. |
[19] |
D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The Amer. Naturalist, 194 (1989), 664.
doi: 10.1086/285003. |
[20] |
B. Zhang, Z. Zhang, Z. Li and Y. Tao, Stability analysis of a two-species model with transitions between population interactions,, J. Theor. Biol., 248 (2007), 145.
doi: 10.1016/j.jtbi.2007.05.004. |
[1] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[2] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[3] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[4] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[5] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[6] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[7] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[10] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[11] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[12] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[13] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[14] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[15] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[16] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]