-
Previous Article
Spectral method for deriving multivariate Poisson summation formulae
- CPAA Home
- This Issue
-
Next Article
Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains
Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows
1. | Institute of Applied Mathematics, College of Science, Northwest A\&F University, Yangling, Shaanxi 712100, China |
2. | Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China |
3. | Department of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275 |
References:
[1] |
J.-Y. Chemin, "Perfect Incompressible Fluids," Oxford Lecture Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press: New York, 1998. |
[2] |
R. Dachin, "Fourier Analysis Methods for PDE's,", 2005. Available from: http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf., ().
|
[3] |
J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rhe., 5 (1961), 23-34.
doi: 10.1122/1.548883. |
[4] |
J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392. |
[5] |
I. Gallagher and F. Planchon, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal., 161 (2002), 307-337.
doi: 10.1007/s002050100175. |
[6] |
R. Hardt and D. Kinderlehrer, "Mathematical Questions of Liquid Crystal Theory," The IMA Volumes in Mathematics andits Applications 5, New York: Springer-Verlag, 1987. |
[7] |
M. Hong, Global existence of solutions of the simplied Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[8] |
X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880.
doi: 10.1007/s00220-010-1017-8. |
[9] |
P.-G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall/CRC, 2002. |
[10] |
F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[11] |
F. Leslie, Theory of flow phenomenum in liquid crystals, In "The Theory of Liquid Crystals," London-New York: Academic Press, 4 (1979), 1-81. |
[12] |
F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[13] |
F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[14] |
F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete. Contin. Dyn. Syst., 2 (1996), 1-22.
doi: 10.3934/dcds.1996.2.1. |
[16] |
F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math., 31B (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[17] |
T. Runst and W. Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co.: Berlin, 1996. |
[18] |
H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[19] |
C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.
doi: 10.1007/s00205-010-0343-5. |
[20] |
H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396.
doi: 10.3934/dcds.2010.26.379. |
[21] |
H. Wu, X. Xu and C. Liu, Asymptotic behavior for a Nematic liquid crystal model with different kinematic transport properties,, DOI 10.1007/s00526-011-0460-5., (): 00526.
doi: 10.1007/s00526-011-0460-5. |
show all references
References:
[1] |
J.-Y. Chemin, "Perfect Incompressible Fluids," Oxford Lecture Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press: New York, 1998. |
[2] |
R. Dachin, "Fourier Analysis Methods for PDE's,", 2005. Available from: http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf., ().
|
[3] |
J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rhe., 5 (1961), 23-34.
doi: 10.1122/1.548883. |
[4] |
J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392. |
[5] |
I. Gallagher and F. Planchon, On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Arch. Rational Mech. Anal., 161 (2002), 307-337.
doi: 10.1007/s002050100175. |
[6] |
R. Hardt and D. Kinderlehrer, "Mathematical Questions of Liquid Crystal Theory," The IMA Volumes in Mathematics andits Applications 5, New York: Springer-Verlag, 1987. |
[7] |
M. Hong, Global existence of solutions of the simplied Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[8] |
X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880.
doi: 10.1007/s00220-010-1017-8. |
[9] |
P.-G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall/CRC, 2002. |
[10] |
F. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[11] |
F. Leslie, Theory of flow phenomenum in liquid crystals, In "The Theory of Liquid Crystals," London-New York: Academic Press, 4 (1979), 1-81. |
[12] |
F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[13] |
F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[14] |
F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete. Contin. Dyn. Syst., 2 (1996), 1-22.
doi: 10.3934/dcds.1996.2.1. |
[16] |
F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math., 31B (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[17] |
T. Runst and W. Sickel, "Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations," de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co.: Berlin, 1996. |
[18] |
H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[19] |
C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.
doi: 10.1007/s00205-010-0343-5. |
[20] |
H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26 (2010), 379-396.
doi: 10.3934/dcds.2010.26.379. |
[21] |
H. Wu, X. Xu and C. Liu, Asymptotic behavior for a Nematic liquid crystal model with different kinematic transport properties,, DOI 10.1007/s00526-011-0460-5., (): 00526.
doi: 10.1007/s00526-011-0460-5. |
[1] |
Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181 |
[2] |
Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127 |
[3] |
Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202 |
[4] |
Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 |
[5] |
Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 |
[6] |
T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101 |
[7] |
Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007 |
[8] |
Kunio Hidano, Kazuyoshi Yokoyama. Global existence and blow up for systems of nonlinear wave equations related to the weak null condition. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022058 |
[9] |
Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007 |
[10] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[11] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[12] |
Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561 |
[13] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[14] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[15] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[16] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
[17] |
Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739 |
[18] |
Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic and Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691 |
[19] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[20] |
François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]