-
Previous Article
Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$
- CPAA Home
- This Issue
-
Next Article
Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$
Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros
1. | Institute for Advanced Study, Shenzhen University, Shenzhen Guangdong, 518060, China |
$ -\mathcal{M}_{\lambda,\Lambda}^+ (D^2u)=f(u) $ in $\Omega$,
$ u=0 $ on $\partial \Omega$
and a more general fully nonlinear elliptic equation
$ F(D^2u)=f(u) $ in $\Omega$,
$ u=0 $ on $\partial \Omega$,
where $\Omega$ is a bounded domain in $\mathbb{R}^N, N\geq 3$, $f$ is a locally Lipschitz continuous function with superlinear growth at infinity. We will show that the equation has at least two positive solutions under some assumptions.
References:
[1] |
A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation, Discrete Continuous Dynamical Systems, 29 (2011), 51-65. |
[2] |
S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, arXiv:1001.4489. |
[3] |
S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, preprint, arXiv:0910.4002. |
[4] |
J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator, Ann. Inst. Henri Poincare, 22 (2005), 187-206.
doi: 10.1016/j.anihpc.2004.05.004. |
[5] |
L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations," Colloquium Publication 43, American Mathematical Society, (1995). |
[6] |
A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations, Ann. Inst. Henri. Poincare, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[7] |
D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63. |
[8] |
P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations, Journal of Functional Analysis, 258 (2010), 4154-4182.
doi: 10.1016/j.jfa.2010.03.012. |
[9] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[10] |
B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations, Comm. in P.D.E, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[11] |
L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros, J. Differential Equations, 248 (2010), 309-327.
doi: 10.1016/j.jde.2009.08.008. |
[12] |
L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. Henri. Poincare, 27 (2010), 763-771.
doi: 10.1016/j.anihpc.2009.11.003. |
[13] |
A. Krasnoselskii, "Positive Solutions of Operator Equations," P. Noordhiff, Groningon, 1964. |
[14] |
P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467. |
[15] |
A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain, Diff. Int. Eq., 17 (2004), 481-494. |
[16] |
A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator, Comm. in P.D.E. 31 (2006), 987-1003.
doi: 10.1080/03605300500394421. |
[17] |
A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Advances in Mathematics, 218 (2008), 105-135.
doi: 10.1016/j.aim.2007.12.002. |
[18] |
B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon, preprint. |
show all references
References:
[1] |
A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation, Discrete Continuous Dynamical Systems, 29 (2011), 51-65. |
[2] |
S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, arXiv:1001.4489. |
[3] |
S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, preprint, arXiv:0910.4002. |
[4] |
J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator, Ann. Inst. Henri Poincare, 22 (2005), 187-206.
doi: 10.1016/j.anihpc.2004.05.004. |
[5] |
L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations," Colloquium Publication 43, American Mathematical Society, (1995). |
[6] |
A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations, Ann. Inst. Henri. Poincare, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[7] |
D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63. |
[8] |
P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations, Journal of Functional Analysis, 258 (2010), 4154-4182.
doi: 10.1016/j.jfa.2010.03.012. |
[9] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[10] |
B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations, Comm. in P.D.E, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[11] |
L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros, J. Differential Equations, 248 (2010), 309-327.
doi: 10.1016/j.jde.2009.08.008. |
[12] |
L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros, Ann. Inst. Henri. Poincare, 27 (2010), 763-771.
doi: 10.1016/j.anihpc.2009.11.003. |
[13] |
A. Krasnoselskii, "Positive Solutions of Operator Equations," P. Noordhiff, Groningon, 1964. |
[14] |
P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441-467. |
[15] |
A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain, Diff. Int. Eq., 17 (2004), 481-494. |
[16] |
A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator, Comm. in P.D.E. 31 (2006), 987-1003.
doi: 10.1080/03605300500394421. |
[17] |
A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Advances in Mathematics, 218 (2008), 105-135.
doi: 10.1016/j.aim.2007.12.002. |
[18] |
B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon, preprint. |
[1] |
Shahar Nevo, Xuecheng Pang and Lawrence Zalcman. Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros. Electronic Research Announcements, 2006, 12: 37-43. |
[2] |
Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107 |
[3] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128 |
[4] |
Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91 |
[5] |
Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145 |
[6] |
Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034 |
[7] |
Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166 |
[8] |
Michael A. Karls. Zeros of solutions of $\Delta u + f(u) = 0$ in the supercritical case. Conference Publications, 1998, 1998 (Special) : 360-370. doi: 10.3934/proc.1998.1998.360 |
[9] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[10] |
Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040 |
[11] |
Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795 |
[12] |
Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062 |
[13] |
A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253 |
[14] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4887-4919. doi: 10.3934/dcds.2021061 |
[15] |
Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036 |
[16] |
Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics and Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019 |
[17] |
Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945 |
[18] |
Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012 |
[19] |
Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks and Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837 |
[20] |
Zhi-Guo Wu, Wen Guan, Da-Bin Wang. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022058 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]