\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Incompressible type euler as scaling limit of compressible Euler-Maxwell equations

Abstract Related Papers Cited by
  • In this paper, we study the convergence of time-dependent Euler-Maxwell equations to incompressible type Euler equations in a torus via the combined quasi-neutral and non-relativistic limit. For well prepared initial data, the local existence of smooth solutions to the limit equations is proved by an iterative scheme. Moreover, the convergences of solutions of the former to the solutions of the latter are justified rigorously by an analysis of asymptotic expansions and the symmetric hyperbolic property of the systems.
    Mathematics Subject Classification: Primary: 35B40, 35C20, 35L60; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Chen, "Introduction to Plasma Physics and Controlled Fusion," Vol. 1, Plenum Press, New-York, 1984.

    [2]

    Andreas Dinklage et al, "Plasma Physics, Lect. Notes Phys," 670, Springer, Berlin Heidelberg, 2005.

    [3]

    V. E. Golant, A. P. Zhilinski and I. E. Sakharov, "Fundamentals of Plasma Physics," John Wiley and Sons, 1980.doi: 01.44227.

    [4]

    Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529.

    [5]

    S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 31 (2006), 571-591.

    [6]

    L. Hsiao, P. Markowichand S. Wang, The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differential Equations, 192 (2003), 111-133.doi: 10.1016/S0022-0396(03)00063-9.

    [7]

    M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209.doi: 10.1007/s00332-001-0004-9.

    [8]

    Y. J. Peng and Y. G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptot. Anal., 41 (2005), 141-160.

    [9]

    S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.doi: 10.1080/03605300008821542.

    [10]

    S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456.doi: 10.1081/PDE-120030403.

    [11]

    Pierre Crispel and Pierre Degond, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2006), 208-234.doi: 10.1016/j.jcp.2006.09.004.

    [12]

    G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler-Maxwell equations, Trans. Theory Stat. Phys., 29 (2000), 311-331.doi: 10.1080/00411450008205877.

    [13]

    J. W. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions, Differential and Integral Equations, 16 (2003) 1345-1368.

    [14]

    Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations, Chin. Ann. Math., 28(B) (2007), 583-602.doi: 10.1007/s11401-005-0556-3.

    [15]

    Y. J. Peng and S. Wang, Rigorous derivayion of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. MATH. ANAL., 40 (2008), 540-565.doi: 10.1137/070686056.

    [16]

    J. W. Yang and S. Wang, Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations, J. Math. Phys., 50 (2009), 123508.doi: 10.1063/1.3267863.

    [17]

    J. W. Yang and S. Wang, The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma, Nonlinear Anal., 72 (2010), 1829-1840.doi: 10.1016/j.na.2009.09.024.

    [18]

    Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Eule equations, Comm. Partial Differential Equations, 33 (2008), 349-376.doi: 10.1080/03605300701318989.

    [19]

    W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations, 155 (1999), 89-132.doi: 10.1006/jdeq.1998.3584.

    [20]

    Y. J. Peng, Y.-G. Wang and W.-A. Yong, Quasi-neutral limit of the non-isentropic the Euler-Poisson system, Procedings of the Royal Society of Edinburgh, 136A (2006), 1013-1026.doi: 10.1017/S0308210500004856.

    [21]

    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), pp. 25-70. Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975.doi: 10.1007/BFb0067080.

    [22]

    A. Majda, "Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables," Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984.

    [23]

    S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., XXXV (1982), 629-651.doi: 10.1002/cpa.3160350503.

    [24]

    S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.doi: 10.1002/cpa.3160340405.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return