-
Previous Article
Resolvent estimates for a two-dimensional non-self-adjoint operator
- CPAA Home
- This Issue
-
Next Article
Incompressible type euler as scaling limit of compressible Euler-Maxwell equations
Numerical study of a family of dissipative KdV equations
1. | LAMFA, UMR 6140, Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80039 Amiens, France, France |
References:
[1] |
M. Abounouh, H. Al Moatassime, J-P. Chehab, S. Dumont and O. Goubet, Discrete schrodinger equations and dissipative dynamical systems, Communications on Pure and Applied Analysis, 7 (2008), 211-227. |
[2] |
M. Abounouh, H. Al Moatassime, C. Calgaro and J-P. Chehab, A numerical scheme for the long time simulation of a forced damped KdV equation,, in preparation., ().
|
[3] |
M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278.
doi: 10.1016/j.physd.2004.01.023. |
[4] |
C. Calgaro, J.-P. Chehab, J. Laminie and E. Zahrouni, Schémas multiniveaux pour les équations d'ondes, (French) [Multilevel schemes for waves equations], ESAIM Proc., 27, EDP Sci., (2009), 180-208.
doi: 10.1051/proc/2009027. |
[5] |
J.-P. Chehab and B. Costa, Time explicit schemes and spatial finite differences splittings, Journal of Scientific Computing, 20 (2004), 159-189. |
[6] |
J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, preprint, INRIA report, HAL, inria-00529227, (2011). |
[7] |
D. Dutykh, Modélisation mathématique des Tsunamis, (French) [Mathematical modeling of Tsunamis], Ph.D thesis, ENS Cachan, 2007. |
[8] |
J-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eq., 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
J-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359.
doi: 10.1006/jdeq.1994.1071. |
[10] |
O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644. |
[11] |
O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.
doi: 10.1006/jdeq.2001.4163. |
[12] |
D. Gottlieb and S. A. Orszag, "Numerical Analysis of Spectral Methods: Theory and Applications," SIAM Philadelphia, 1977.
doi: 10.1115/1.3424477. |
[13] |
S. Mallat, "A Wavelet Tour of Signal Processing," Academic press, 1998. |
[14] |
A. Miranville and R. Temam, "Mathematical Modeling in Continuum Mechanics," Cambridge University Press, 2005. |
[15] |
L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case,, preprint, ().
|
[16] |
E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic wave with Landau damping, Physics of fluids, 12 (1969), 2388-2394.
doi: 10.1063/1.1692358. |
[17] |
E. Ott and R. N. Sudan, Damping of solitary waves, Physics of fluids, 13 (1970), 1432-1435.
doi: 10.1063/1.1693097. |
[18] |
A. Duràn and J. M. Sanz-Serna, The numerical integration of a relative equilibrium solutions. the nonlinear schrodinger equation, IMA J. Num. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[19] |
R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4684-0313-8. |
[20] |
S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcialaj Ekvacioj, 54 (2011), 119-138.
doi: 10.1619/fesi.54.119. |
[21] |
S. Vento, Asymptotic behavior for dissipative Korteweg-de Vrie equations, Asymptot. Anal., 68 (2010), 155-186. |
show all references
References:
[1] |
M. Abounouh, H. Al Moatassime, J-P. Chehab, S. Dumont and O. Goubet, Discrete schrodinger equations and dissipative dynamical systems, Communications on Pure and Applied Analysis, 7 (2008), 211-227. |
[2] |
M. Abounouh, H. Al Moatassime, C. Calgaro and J-P. Chehab, A numerical scheme for the long time simulation of a forced damped KdV equation,, in preparation., ().
|
[3] |
M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278.
doi: 10.1016/j.physd.2004.01.023. |
[4] |
C. Calgaro, J.-P. Chehab, J. Laminie and E. Zahrouni, Schémas multiniveaux pour les équations d'ondes, (French) [Multilevel schemes for waves equations], ESAIM Proc., 27, EDP Sci., (2009), 180-208.
doi: 10.1051/proc/2009027. |
[5] |
J.-P. Chehab and B. Costa, Time explicit schemes and spatial finite differences splittings, Journal of Scientific Computing, 20 (2004), 159-189. |
[6] |
J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, preprint, INRIA report, HAL, inria-00529227, (2011). |
[7] |
D. Dutykh, Modélisation mathématique des Tsunamis, (French) [Mathematical modeling of Tsunamis], Ph.D thesis, ENS Cachan, 2007. |
[8] |
J-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eq., 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
J-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359.
doi: 10.1006/jdeq.1994.1071. |
[10] |
O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644. |
[11] |
O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.
doi: 10.1006/jdeq.2001.4163. |
[12] |
D. Gottlieb and S. A. Orszag, "Numerical Analysis of Spectral Methods: Theory and Applications," SIAM Philadelphia, 1977.
doi: 10.1115/1.3424477. |
[13] |
S. Mallat, "A Wavelet Tour of Signal Processing," Academic press, 1998. |
[14] |
A. Miranville and R. Temam, "Mathematical Modeling in Continuum Mechanics," Cambridge University Press, 2005. |
[15] |
L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case,, preprint, ().
|
[16] |
E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic wave with Landau damping, Physics of fluids, 12 (1969), 2388-2394.
doi: 10.1063/1.1692358. |
[17] |
E. Ott and R. N. Sudan, Damping of solitary waves, Physics of fluids, 13 (1970), 1432-1435.
doi: 10.1063/1.1693097. |
[18] |
A. Duràn and J. M. Sanz-Serna, The numerical integration of a relative equilibrium solutions. the nonlinear schrodinger equation, IMA J. Num. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[19] |
R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4684-0313-8. |
[20] |
S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcialaj Ekvacioj, 54 (2011), 119-138.
doi: 10.1619/fesi.54.119. |
[21] |
S. Vento, Asymptotic behavior for dissipative Korteweg-de Vrie equations, Asymptot. Anal., 68 (2010), 155-186. |
[1] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[2] |
Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 |
[3] |
Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389 |
[4] |
Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245 |
[5] |
Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 |
[6] |
M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 |
[7] |
Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021039 |
[8] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 |
[9] |
Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442 |
[10] |
Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625 |
[11] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[12] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
[13] |
Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 |
[14] |
Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021052 |
[15] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[16] |
Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 |
[17] |
Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 |
[18] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[19] |
Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 |
[20] |
Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]