March  2013, 12(2): 711-719. doi: 10.3934/cpaa.2013.12.711

Median values, 1-harmonic functions, and functions of least gradient

1. 

Department of Mathematics, Sewanee: The University of the South, Sewanee, TN 37383, United States

2. 

Department of Mathematics, Washington State University, Pullman, WA 99164, United States

Received  October 2011 Revised  June 2012 Published  September 2012

Motivated by the mean value property of harmonic functions, we introduce the local and global median value properties for continuous functions of two variables. We show that the Dirichlet problem associated with the local median value property is either easy or impossible to solve, and we prove that continuous functions with this property are $1$-harmonic in the viscosity sense. We then close with the following conjecture: a continuous function having the global median value property and prescribed boundary values coincides with the function of least gradient having those same boundary values.
Citation: Matthew B. Rudd, Heather A. Van Dyke. Median values, 1-harmonic functions, and functions of least gradient. Communications on Pure and Applied Analysis, 2013, 12 (2) : 711-719. doi: 10.3934/cpaa.2013.12.711
References:
[1]

F. Cao, "Geometric Curve Evolution and Image Processing," Lecture Notes in Mathematics 1805, Springer-Verlag, Berlin, 2003. doi: 10.1007/b10404.

[2]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets, SIAM J. Numer. Anal., 32 (1995), 1895-1909. doi: 10.1137/0732085.

[3]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[4]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998.

[5]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics 80, Birkhäuser Verlag, Basel, 1984. doi: 775682 (87a:58041).

[6]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables, Rocky Mountain J. Math., 41 (2011), 493-504. doi: 10.1216/RMJ-2011-41-2-493.

[7]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions,, preprint., (). 

[8]

P. Juutinen, $p$-Harmonic approximation of functions of least gradient, Indiana Univ. Math. J., 54 (2005), 1015-1029. doi: 10.1512/iumj.2005.54.2658.

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.

[10]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.

[11]

S. G. Noah, The median of a continuous function, Real Analysis Exchange, 33 (2008), 269-74.

[12]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99 (2004), 365-379. doi: 10.1007/s00211-004-0566-1.

[13]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion, SIAM J. Appl. Math., 60 (2000), 868-890. doi: 10.1137/S003613999833397X.

[14]

D. Stroock, "Probability Theory, An Analytic View," Cambridge UP, Cambridge, 1993.

[15]

Z. Waksman and J. Wasilewsky, A theorem on level lines of continuous functions, Israel J. Math., 27 (1977), 247-251.

[16]

W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[17]

W. P. Ziemer, Functions of least gradient and BV functions, in "Nonlinear Analysis, Function Spaces and Applications," Vol. 6, Acad. Sci. Czech Repub., Prague, 1999, 270-312.

show all references

References:
[1]

F. Cao, "Geometric Curve Evolution and Image Processing," Lecture Notes in Mathematics 1805, Springer-Verlag, Berlin, 2003. doi: 10.1007/b10404.

[2]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets, SIAM J. Numer. Anal., 32 (1995), 1895-1909. doi: 10.1137/0732085.

[3]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[4]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998.

[5]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics 80, Birkhäuser Verlag, Basel, 1984. doi: 775682 (87a:58041).

[6]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables, Rocky Mountain J. Math., 41 (2011), 493-504. doi: 10.1216/RMJ-2011-41-2-493.

[7]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions,, preprint., (). 

[8]

P. Juutinen, $p$-Harmonic approximation of functions of least gradient, Indiana Univ. Math. J., 54 (2005), 1015-1029. doi: 10.1512/iumj.2005.54.2658.

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33 (2001), 699-717. doi: 10.1137/S0036141000372179.

[10]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), 344-407. doi: 10.1002/cpa.20101.

[11]

S. G. Noah, The median of a continuous function, Real Analysis Exchange, 33 (2008), 269-74.

[12]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99 (2004), 365-379. doi: 10.1007/s00211-004-0566-1.

[13]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion, SIAM J. Appl. Math., 60 (2000), 868-890. doi: 10.1137/S003613999833397X.

[14]

D. Stroock, "Probability Theory, An Analytic View," Cambridge UP, Cambridge, 1993.

[15]

Z. Waksman and J. Wasilewsky, A theorem on level lines of continuous functions, Israel J. Math., 27 (1977), 247-251.

[16]

W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[17]

W. P. Ziemer, Functions of least gradient and BV functions, in "Nonlinear Analysis, Function Spaces and Applications," Vol. 6, Acad. Sci. Czech Repub., Prague, 1999, 270-312.

[1]

Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329

[2]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[3]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[4]

Shiping Cao, Hua Qiu. Boundary value problems for harmonic functions on domains in Sierpinski gaskets. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1147-1179. doi: 10.3934/cpaa.2020054

[5]

Huajun Tang, T. C. Edwin Cheng, Chi To Ng. A note on the subtree ordered median problem in networks based on nestedness property. Journal of Industrial and Management Optimization, 2012, 8 (1) : 41-49. doi: 10.3934/jimo.2012.8.41

[6]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial and Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[7]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[8]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[9]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[10]

Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure and Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121

[11]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[12]

Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041

[13]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[14]

Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57

[15]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[16]

Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157

[17]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems and Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[18]

C.Y. Wang, M.X. Li. Convergence property of the Fletcher-Reeves conjugate gradient method with errors. Journal of Industrial and Management Optimization, 2005, 1 (2) : 193-200. doi: 10.3934/jimo.2005.1.193

[19]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[20]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure and Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]